Elastic Response Analysis of Very Large Floating Structures in Waves Using Spectrum Finite Element Method

波浪中超大型漂浮结构的弹性响应分析采用谱有限元法

基本信息

  • 批准号:
    08651102
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 1997
  • 项目状态:
    已结题

项目摘要

The objective of the present project is to develop a simplified method of elastic response analysis of a Very Large Floating Structure (VLFS) in waves to evaluate the relationship between elastic response and structural parameters, such as mass and stiffness distributions, in the initial design stage. For this purpose, one-dimensional spectrum finite element using the dynamic shape function of bending and flexural-torsional deformation of a beam placed on an elastic foundation was derived. In the proposed approach, the exact solution of dynamic equilibrium equation of a beam under given extrernal loads can be obtained by small number of elements. The change in mass and stiffness can be easily considered by using standard finite element procedures.A series of structural response analysis of pontoon-type and semi-submersible type VLFSs was performed, and the influences of mass and stiffness distributions on structural responses were investigated. It has been found that :(1) The reduction of mass of the end part of structures is an effective way to avoid resonance in waves for pontoon-type very large floating structures.(2) The increase of bending stiffness is effective to reduce the bending response of a VLFS,including deflection and bending stress. The same holds for flexural-torsional responses.(3) The influence of vertical shear stiffness on the bending response of VLFS is only negligible.(4) For the VLFS with a large width to length ratio, the deformation as a plate takes place in width direction in reality. Accordingly, a beam model tends to overestimate the stiffness of structures.Some limitation must be therefore imposed on the application of a beam model to the response analyzes of a VLFS.
本项目的目的是开发一种简化的超大型浮动结构(VLFS)在波浪中的弹性响应分析方法,以评估弹性响应与结构参数(如质量和刚度分布)之间的关系,在初始设计阶段。为此,利用弹性基础上梁的弯曲和弯扭变形的动态形状函数,推导了一维谱有限元。在该方法中,只需少量的单元,即可得到给定外荷载作用下梁的动力平衡方程的精确解。质量和刚度的变化可以很容易地用标准有限元程序来考虑。对浮筒型和半潜式vlfs进行了一系列结构响应分析,研究了质量和刚度分布对结构响应的影响。研究发现:(1)对于浮桥型超大型浮体结构,减小结构端部质量是避免波浪共振的有效途径。(2)提高弯曲刚度可以有效降低VLFS的弯曲响应,包括挠度和弯曲应力。弯扭响应也是如此。(3)竖向剪切刚度对VLFS弯曲响应的影响可以忽略不计。(4)对于宽长比较大的VLFS,实际中作为板的变形主要发生在宽方向上。因此,梁模型往往会高估结构的刚度。因此,束模型在VLFS响应分析中的应用必须受到一定的限制。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
藤久保 昌彦: "Dynamic Response Analysis of Very Large Floating Structures in Waves Using One-Dimensional Finite Element Model" Proceeding of the 16th Int. Conf. offshore Mechanics and Arctic Engineering (OMAE97). Vol. IV. 107-114 (1997)
Masahiko Fujikubo:“使用一维有限元模型进行波浪中的动态响应分析”第 16 届国际近海力学和北极工程会议论文集 (OMAE97)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masahiko Fujikubo: "Dynamic Response Analysis of Very large Floating Structures in Waves Using One-Dimensional Finite Element Model" Proc.Of the 16th Int.Conf.on Offshore Mechanics and Arctic Engineering (OMAE97). Vol.IV. 107-114 (1997)
Masahiko Fujikubo:“使用一维有限元模型对波浪中超大型浮动结构进行动态响应分析”Proc.Of the 16th Int.Conf.on Offshore Mechanics and Arctic Engineering (OMAE97)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
藤久保 昌彦: "Dynamic Response Analysis of Very Large Floating Structures in Waves Using One-Dimensional Finite Element Model" Proceeding of the 16th Int.Conf.on Offshore Mechanics and Arctic Engineering (OMAE97). Vol.IV. 107-114 (1997)
Masahiko Fujikubo:“使用一维有限元模型对波浪中的大型浮动结构进行动态响应分析”第 16 届海上力学和北极工程国际会议论文集 (OMAE97)(1997 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
藤久保 昌彦: "一次元有限要素モデルによる超大型浮体の波浪中構造応答解析" 日本造船学会論文集. 179. 349-358 (1996)
Masahiko Fujikubo:“使用一维有限元模型对波浪中的超大型浮体进行结构响应分析”日本造船学会汇刊 179. 349-358 (1996)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masahiko Fujikubo: "Structural Response Analysis of Very Large Floating Structures In Waves Using One-Dimensional Finite Element Model" J.of Soc.Naval Arch.Japan. Vol.179. 349-358 (1996)
Masahiko Fujikubo:“使用一维有限元模型对波浪中的大型浮动结构进行结构响应分析”J.of Soc.Naval Arch.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUJIKUBO Masahiko其他文献

FUJIKUBO Masahiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUJIKUBO Masahiko', 18)}}的其他基金

Development and application of the method of collapse behavior of floating structures in large waves
大波浪中漂浮结构倒塌行为方法的开发与应用
  • 批准号:
    23246150
  • 财政年份:
    2011
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Ultimate strength of ship structure and its uncertainty model
船舶结构极限强度及其不确定性模型
  • 批准号:
    20246126
  • 财政年份:
    2008
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Progressive Collapse Behavior of Ship Hull and Efficient Method of Its Analysis
船体渐进倒塌行为及其有效分析方法
  • 批准号:
    16206085
  • 财政年份:
    2004
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Structural Collapse Behavior of Very Large Floating Structures in Waves
波浪中超大型漂浮结构的结构倒塌行为
  • 批准号:
    13450409
  • 财政年份:
    2001
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of simplified model for buckling collapse analysis of plates and stiffened plates under cyclic loa
循环负载下板和加筋板屈曲倒塌分析简化模型的开发
  • 批准号:
    10555342
  • 财政年份:
    1998
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似海外基金

Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
  • 批准号:
    23K04012
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
  • 批准号:
    573136-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
  • 批准号:
    2795756
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
  • 批准号:
    22K04278
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
  • 批准号:
    2207164
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Continuing Grant
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
  • 批准号:
    2009366
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
  • 批准号:
    2012285
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
  • 批准号:
    20K10160
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
  • 批准号:
    19K15078
  • 财政年份:
    2019
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
  • 批准号:
    429491391
  • 财政年份:
    2019
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了