Study on Artinian rings with self-duality
具有自对偶性的阿天环研究
基本信息
- 批准号:10440008
- 负责人:
- 金额:$ 2.62万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Though the title of this investigation is on the study of artinian rings with self-duality, our main purpose is to establish the bottom current of artinian rings. In the early 1980's, M. Harada introduced two new classes of artinian rings. However, the head investigator Oshiro showed that these two classes are the same class and contain quasi-Frobenius rings and Nakayama rings which are classical artinian rings. Oshiro called this new artinian ring "Harada ring" and extensively studied the structure of these rings and applied to classical artinian rings during the past twenty years. His fundamental theorems are following :(1)Every Harada rings can be constructed by Quasi-Frobenius rings. Major applications of this theorem are followings :(2)Every Nakayama rings can be constructed by Quasi-Frobenius Nakayama rings, and moreover.(3)Every Quasi-Frobenius Nakayama rings can be constructed by skew matrix rings over local Nakayama rings. Thus we can say that there are deep relations between Quasi-Frobanius rings, Nakayama rings and Harada rings, and the essence of the structure of Nakayama rings takes root in skew matrix rings over local Nakayama rings.Under these cricumstances, in our investigation, we studied the self- duality of Harada rings and showed the following are equivalent problems.(1)Are Harada rings self-dual?(2)Has every Quasi-Frobenius Nakayama automorphisms?This result was published in Kado-Oshiro : HARADA rings and self-duality, J. Algebra (1999). Further-more, recently, using Kaemer's theorem, KOIKE pointed out that there are counter examples in our problems above. Thus, our investigation is now completed and bottom current of artinian rings becomes clear.
尽管这项调查的标题是关于自以为是的研究,但我们的主要目的是建立Artinian Rings的最低水平。在1980年代初期,M. Harada推出了两个新的Artinian戒指。但是,调查员OSHIRO表明,这两个类别是同一类,包含准弗罗贝尼乌斯环和Nakayama环,它们是古典Artinian戒指。 Oshiro称这种新的Artinian环为“原始戒指”,并广泛研究了这些戒指的结构,并在过去二十年中应用于古典Artinian戒指。他的基本定理正在遵循:(1)每个原始戒指都可以由Quasi-Frobenius Rings构造。该定理的主要应用是:(2)每个nakayama环可以由Quasi-frobenius nakayama戒指构建,此外。(3)每个Quasi-frobenius Nakayama戒指都可以由偏斜的矩阵环在本地nakayama环上构建。 Thus we can say that there are deep relations between Quasi-Frobanius rings, Nakayama rings and Harada rings, and the essence of the structure of Nakayama rings takes root in skew matrix rings over local Nakayama rings.Under these cricumstances, in our investigation, we studied the self- duality of Harada rings and showed the following are equivalent problems.(1)Are Harada rings自我偶尔?(2)是否有每个准杂种纳卡亚山(Nakayama)的自动形态?这个结果发表在Kado-oshiro:Harada Rings and duality中,J。Elgebra(1999)。最近,使用Kaemer定理,Koike指出,上面的问题中有反对例子。因此,我们的调查现在已经完成,Artinian环的最低电流变得清晰。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
大城 紀代市: "Self-duality and Harada rings"J.ALgebra. 211. 384-408 (1999)
Kiyoichi Oshiro:“自对偶性和原田环”J.ALgebra。211. 384-408 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
倉富要輔: "CS-property of direct sums of CS-modules"To appear in Trenads in Math.
Yosuke Kuratomi:“CS-模数直和的 CS 性质”出现在数学中的 Trenads 中。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
大城 紀代市: "Artm環におけるHaradaの理論と関連するトピックス"第44回 代数学シンポジウム報告書. 44. 31-39 (1999)
Kiyoichi Oshiro:“Harada 的 Artm 环理论及相关主题”第 44 届代数研讨会报告 44. 31-39 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
KADO, Jiro: "Self-duality and HARADA rings"J. Algebra. 221. 384-408 (1999)
KADO、Jiro:“自我二元性和 HARADA 环”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉村浩: "Finitely pseudo-Frobenius rings"to appear in Trends in Math.
Hiroshi Yoshimura:“有限伪弗罗贝尼乌斯环”出现在《数学趋势》中。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OSHIRO Kiyoichi其他文献
OSHIRO Kiyoichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OSHIRO Kiyoichi', 18)}}的其他基金
Synthetical study of ring and representation Theory based on Quasi-Frobenius rings
环的综合研究及基于拟弗罗贝尼乌斯环的表示理论
- 批准号:
18340011 - 财政年份:2006
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on fundamental problems inside the undercurrent of Artinian rings
阿尔天环暗流内部基本问题研究
- 批准号:
15540034 - 财政年份:2003
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Artinian rings with priority given to Quasi-Frobenius rings
以准弗罗贝尼乌斯环为主的阿天尼环研究
- 批准号:
13640028 - 财政年份:2001
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Synthetical study of ring and representation Theory based on Quasi-Frobenius rings
环的综合研究及基于拟弗罗贝尼乌斯环的表示理论
- 批准号:
18340011 - 财政年份:2006
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On Artinian rings
在阿提尼安环上
- 批准号:
15540027 - 财政年份:2003
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on fundamental problems inside the undercurrent of Artinian rings
阿尔天环暗流内部基本问题研究
- 批准号:
15540034 - 财政年份:2003
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Artinian rings with priority given to Quasi-Frobenius rings
以准弗罗贝尼乌斯环为主的阿天尼环研究
- 批准号:
13640028 - 财政年份:2001
- 资助金额:
$ 2.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)