Geometric and group-theoretic studies on differential equations
微分方程的几何和群论研究
基本信息
- 批准号:10440019
- 负责人:
- 金额:$ 2.94万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have developed geometric and group-theoretic studies of differential equations, in particular on Monge-Ampere equations, systems of ordinary differential equations, and holonomic systems, in which played a fundamental role the method of nilpotent geometry and analysis developed by N.Tanaka and T.Morimoto.On the occasion of centennial after the death of Sophus Lie, we have organized an International Conference on Lie Groups, Geometric Structures, and Differential Equations -One Hundred Years after Sophus Lie - in Kyoto and Nara from the 13ィイD1thィエD1 to 21ィイD1stィエD1 December, 1999 (Organizers : B.Komrakov, M.Kuranishi, B.Malgrange, T.Morimoto(chairman), H.Sato and K.Yamaguchi).There were given 32 one-hour lectures by 19 mathematicians from abroad and 13 from Japan. More than 120 mathematicians have taken part in this conference. We shall publish the proceedings of the conference first in Kokyuroku(lecture note) of Research Institute for Mathematical Science, Kyoto University and then as a more expanded version in the series of Advanced Studies in Pure Mathematics.Preparatory to this international conference, we have held, in co-operation with International Sophus Lie Center, Japanese-Russian workshop "Towards 100 years after Sophus Lie" in Kazan, Russia from the 7ィイD1thィエD1 to 17ィイD1thィエD1 September, 1998. About 30 participants (11 Japanese) have exchanged their recent research on Lie groups, geometric structures, differential equations and representation theory.As the proceedings to this workshop there have been published in Lobachevskii Journal of Mathematics 3, 4 (1999) twenty-three papers contributed by the participants.
我们发展了微分方程的几何和群论研究,特别是Monge-Ampere方程,常微分方程组和完整系统,其中N.Tanaka和T.Morimoto发展的幂零几何和分析方法发挥了基础作用。在Sophus Lie去世一百周年之际,我们组织了李群,几何结构,和微分方程-Sophus Lie之后一百年-1999年12月13日至21日在京都和奈良举行(组织者:B.Komrakov、M.Kuranishi、B.Malgrange、T.Morimoto(主席)、H.Sato和K.Yamaguchi)。来自国外的19位数学家和来自日本的13位数学家进行了32场一小时的讲座。超过120名数学家参加了这次会议。我们将首先在Kokyuroku出版会议记录(讲座笔记)的研究所数学科学,京都大学,然后作为一个更扩大的版本在一系列的高等研究纯数学。筹备这次国际会议,我们举行了,在合作与国际索菲斯李中心,日俄研讨会“走向100年后索菲斯李”在喀山,俄罗斯从1998年9月7日至17日。大约30名与会者(11名日本人)交流了他们最近在李群,几何结构,微分方程和表示论方面的研究。作为这次研讨会的会议记录,在Lobachevskii Journal of Mathematics 3,4(1999)上发表了与会者贡献的23篇论文。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G. Ishikawa: "Singularities of developable surfaces"London Math. Soc. Lecture Notes. 263. 403-418 (1999)
G. Ishikawa:“可展曲面的奇异性”伦敦数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. MORIMOTO (with Machida): "On decomposable Monge-Ampere equations"Lobacheuskii J. of Math.. 3. 185-196 (1999)
T. MORIMOTO(与 Machida):“论可分解的 Monge-Ampere 方程”Lobacheuskii J. of Math.. 3. 185-196 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Morimoto (with B.Doubrocv and B.Komrakov): "Equivalence of holonomic differential equations"Lobachevskii Journal of Mathematics. 3. 39-71 (1999)
T.Morimoto(与 B.Doubrocv 和 B.Komrakov):“完整微分方程的等价”Lobachevskii 数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Omori (with Maeda et al.): "Poincare-Cartan class and deformation quantization of Kchler manifolds"Comm.Math.Physics. 194. 207-230 (1998)
H.Omori(与 Maeda 等人):“Poincare-Cartan 类和 Kchler 流形的变形量化”Comm.Math.Physics。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Farant,S.Kaneyuki,・・・: "Analysis and Geometry of Complex Homogeneous Domains" Birkhauser(to appear),
J.Farant、S.Kaneyuki、・・・:“复杂齐次域的分析和几何”Birkhauser(待出现)、
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORIMOTO Tohru其他文献
MORIMOTO Tohru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORIMOTO Tohru', 18)}}的其他基金
Development of nilpotent geometry and nilpotent analysis II
幂零几何和幂零分析的发展II
- 批准号:
23540114 - 财政年份:2011
- 资助金额:
$ 2.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of nilpotent geometry and nilpotent analysis
幂零几何和幂零分析的发展
- 批准号:
19540082 - 财政年份:2007
- 资助金额:
$ 2.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of nilpotent geometry and nilpotent analysis, and subriemannian geometry
幂零几何和幂零分析以及亚布里曼几何的发展
- 批准号:
16540065 - 财政年份:2004
- 资助金额:
$ 2.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric structures and differential equations on filtered manifolds
滤波流形上的几何结构和微分方程
- 批准号:
13640071 - 财政年份:2001
- 资助金额:
$ 2.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of nilpotent geometry and nilpotent analysis II
幂零几何和幂零分析的发展II
- 批准号:
23540114 - 财政年份:2011
- 资助金额:
$ 2.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of nilpotent geometry and nilpotent analysis
幂零几何和幂零分析的发展
- 批准号:
19540082 - 财政年份:2007
- 资助金额:
$ 2.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of nilpotent geometry and nilpotent analysis, and subriemannian geometry
幂零几何和幂零分析以及亚布里曼几何的发展
- 批准号:
16540065 - 财政年份:2004
- 资助金额:
$ 2.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: RUI: Gelfand Pairs in Nilpotent Analysis
数学科学:RUI:幂幂分析中的 Gelfand 对
- 批准号:
9201218 - 财政年份:1992
- 资助金额:
$ 2.94万 - 项目类别:
Continuing Grant














{{item.name}}会员




