STUDY OF ALMOST-DENSE EXTENSION GROUPS
近密扩展群的研究
基本信息
- 批准号:10640051
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let A be a torsion-free group. An arbitrary abelian group G is said to be an almost-dense extension group (ADE group) of A if A is almost-dense in G and T(G)-high of G. One of the goals of my recent research is to give the structure, the realization, and the classification theorem for ADE groups. L.Fuchs gave an example of the simplest ADE group in his book "Infinite Abelian Groups Vol.2" as Example 2 at p.186. Motivated by this example, I began to study ADE groups.The goal of this project is to study ADE groups of torsion-free rank 1. First, I gave the structure, the realization, and the classification theorem for ADE groups of torsion-free rank 1 whose p-primary subgroup are cyclic for every prime p. An ADE group G is said to be elementary if GィイD2pィエD2 is a direct sum of cyclic group for every prime p. Next, I started studying such elementary ADE groups of torsion-free rank 1. Introducing the concept of quasi-purifiable subgroups into ADE groups of torsion-free rank 1 and defining s … More tandard ADE groups, I established the structure, the realization, and the classification theorem for elementary ADE group of torsion-free rank 1.In general, for every p-group, there exist basic subgroups and all basic subgroups are isomorphic. I extended the concept of basic subgroups from p-group to arbitrary abelian groups. I proved that there exist basic subgroups for every abelian group and all basic subgroups of ADE groups of torsion-free rank 1 are isomorphic. Using basic subgroups, I established the structure theorem. In fact, I proved that an ADE group of torsion-free rank 1 has a moho subgroup and QT-matrices for every prime. Conversely, if there exist a torsion group T, torsion-free rank-one group A, and such matrices for every prime, there exists an ADE group G with T as a maximal torsion subgroup, A as a moho subgroup, and such matrices as QT-matrices. This is the realization theorem.Using the concept of quasi-basis of p-groups, I obtained the classification theorem. It is well-known that the countable mixed groups H and K of torsion-free rank 1 are isomorphic if and only if T(H)ィイD6〜(/)=ィエD6T(K) and the height matrices H(H) and H(K) are equivalent. I proved that the ADE groups L and M of torsion-free rank 1 are isomorphic if and only if T(L)ィイD6〜(/)=ィエD6T(M) and the height matrices H(L) and H(M) are equivalent. Since there exist uncountable ADE groups, I partially deduced this famous result. Less
设A是一个挠自由群。任意交换群G称为A的几乎稠密扩张群(ADE群),如果A在G中几乎稠密且T(G)-高。我最近研究的目的之一就是给出ADE群的结构、实现和分类定理。L.Fuchs在他的《无限阿贝尔群第二卷》一书中给出了一个最简单的ADE群的例子,作为例子2在第186页。在这个例子的启发下,我开始研究ADE群。本课题的目的是研究秩为1的无挠的ADE群。首先,给出了对每个素数p为循环子群的秩为1的无挠的ADE群的结构、实现和分类定理。如果GィイD2pィエD2是对每个素数p的循环群的直和,则称G是初等的我开始研究这种秩为1的初等无挠ADE群。将拟可纯化子群的概念引入到秩为1的ADE群中,定义了S…在更多的标准ADE群的基础上,建立了无挠秩为1的初等ADE群的结构、实现和分类定理。一般地,对每个p-群,存在基本子群,且所有基本子群同构。我把基本子群的概念从p-群推广到任意交换群。证明了每个交换群都存在基本子群,且1阶自由挠ADE群的所有基本子群同构。利用基本子群,建立了结构定理。事实上,我证明了一个秩为1的无挠的ADE群有一个Moho子群和每个素数的QT-矩阵。反之,如果存在扭群T,无挠一阶群A,且对每个素数都有这样的矩阵,则存在一个ADE群G,其中T是极大扭子群,A是Moho子群,并且有这样的矩阵,如QT-矩阵。利用p-群的拟基的概念,得到了p-群的分类定理。众所周知,1阶挠的可数混合群H和K同构的充要条件是T(H)ィイD6=ィエD6T(K)且高度矩阵H(H)和H(K)等价。证明了1阶无挠ADE群L与M同构的充要条件是T(L)ィイD6=ィエD6T(M),高度矩阵H(L)与H(M)等价。由于存在不可数的ADE群,我部分地推导了这个著名的结果。较少
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
奥山京: "On Kernels of Purifiability in Arbitrary Abelian Groups"Hokkaido Journal of Mathematics. (未定). (2000)
Kyo Okuyama:“论任意阿贝尔群中的可纯化性”北海道数学杂志(待定)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
奥山京: "On Almost-Dense Extension Groups of Torsion-FreeGroups"Journal of Algebra. 202. 202-208 (1998)
Kyo Okuyama:“关于无扭转群的近稠扩展群”代数杂志 202. 202-208 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
奥山京: "On Kernels of Purifiability in Arbitrary Abelian Groups"Hokkaido Journal of Mathematics. (2000)
Kyo Okuyama:“任意阿贝尔群中的可纯化性核”北海道数学杂志(2000 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Okuyama: "On Kernels of Purifiability in Arbitrary Abelian Groups"Hokkaido Journal of Mathematics. (to appear). (2000)
Takashi Okuyama:“论任意阿贝尔群中的可净化性核”北海道数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
奥山京: "On Almost-Dense Extension Groups of Torsion-Free Groups"Journal of Algebra. 202. 202-228 (1998)
Kyo Okuyama:“关于无扭转群的近稠扩展群”代数杂志 202. 202-228 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKUYAMA Takashi其他文献
OKUYAMA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKUYAMA Takashi', 18)}}的其他基金
ABELIAN GROUPS OF TORSION-FREE RANK 1
无扭矩 1 级的阿贝尔群
- 批准号:
15540052 - 财政年份:2003
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RESEARCH OF PURIFIABLE AND QUASI-PURIFIABLE SUBGROUPS
可纯化和准可纯化子群的研究
- 批准号:
13640053 - 财政年份:2001
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the physical process of development and maturation of tree cells
树细胞发育成熟物理过程的研究
- 批准号:
10460072 - 财政年份:1998
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Development of wood materials as a radon sealant
开发木质材料作为氡气密封剂
- 批准号:
07556041 - 财政年份:1995
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Effect of diurnal change of turgor pressure on wood formation
膨胀压力日变化对木材形成的影响
- 批准号:
06454094 - 财政年份:1994
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Growth Mechanism of Fast Grown Species in Tropical Forest
热带森林速生树种的生长机制
- 批准号:
06044098 - 财政年份:1994
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for international Scientific Research
Performance of wood and wooden materials as radon sealant
木材及木质材料作为氡气密封剂的性能
- 批准号:
03454079 - 财政年份:1991
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Fundamental research on the reduction of indoor radon concentration
降低室内氡浓度的基础研究
- 批准号:
02304024 - 财政年份:1990
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Effectn of Wave Form on Dissipated Energy During Fatigue of Wood.
波形对木材疲劳过程中耗散能量的影响。
- 批准号:
63560164 - 财政年份:1988
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)