Handlebody splittings of 3-manifolds with bounday
带边界的 3 歧管手柄体分裂
基本信息
- 批准号:10640094
- 负责人:
- 金额:$ 0.58万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We call a compact, connected, orientable 3-manifold M with nonempty boundary ∂M a bordered 3-manifold. A bordered 3-manifold H is said to be a handlebody of genus g iff H is the disk-sum (= the boundary connected-sum) of g copies of the solid-torus.It is well-known that a closed (=compact, without boundary) , connected, orientable 3-manifold M is decomposed into two homeomorphic handlebodies ; and such a splitting is called a Heegaard splitting for M.On the other hand, in 1970 J. S. Downig proved that every bordered 3-manifold can be decomposed into two homeomorphic handlebodies, and L. G. Roeling discoursed on these decompositions for bordered 3-manifolds with connected boundary. The research results are (1) to report the Downing's results in slightly modified forms, (2) to generalize the Roeling's results to borderd 3-manifolds with several boundaries, (3) to formulate a Haken type theorem for these decompositions in the way of Casson and Gordon, and (4) to discuss another Haken type theorem for these decomposition with essential proper disks.
我们称一个紧的,连通的,可定向的具有非空边界∂M的3流形M为有边界的3流形。一个有边界的3流形H被称为g属的柄体,如果H是固体环面的g个拷贝的盘和(=边界连通和)。众所周知,一个闭合的(紧的,无边界的),连通的,可定向的3-流形M被分解成两个同胚的柄体;另一方面,j.s. Downig在1970年证明了每一个有边3流形都可以分解为两个同胚柄体,L. G. Roeling讨论了具有连通边界的有边3流形的分解。研究结果有:(1)以稍作修改的形式报道了Downing的结果;(2)将Roeling的结果推广到具有多个边界的有边3流形;(3)用Casson和Gordon的方法给出了这些分解的一个Haken型定理;(4)讨论了这些分解的另一个带本质固有盘的Haken型定理。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shin'ichi Suzuki: "Handlebody splittings of compact 3-manifolds with boundary"Proceedings of Workshop Knots 1999,. (2000)
Shinichi Suzuki:“带有边界的紧凑 3 歧管的手柄体分裂”,Workshop Knots 1999 年论文集,。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shin'ichi Suzuki: "Handlebody splittings of compact 3-manifolds with boundary"Proceedings "Knot Theory" (ed. M. Sakuma). 323-330 (2000)
Shinichi Suzuki:“带边界的紧凑 3 流形的手柄体分裂”论文集“结理论”(M. Sakuma 编辑)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shinichi Suzuki: "Handlebody splittings of compact 3-manifolds with boundary"Proceedings of Workshop Knots Theory 1999, ed. M. Sakuma. 323-330 (2000)
Shinichi Suzuki:“带边界的紧凑 3 流形的手柄体分裂”Proceedings of Workshop Knots Theory 1999,编辑。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
鈴木晋一: "コンパクト境界付き3次元多様体のハンドル体分解" 早稲田大学教育学部学術研究(数学編). 46号. (1998)
铃木真一:“处理紧有界3维流形的场分解”早稻田大学教育学部学术研究(数学版)第46期。(1998年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUZUKI Shinichi其他文献
SUZUKI Shinichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUZUKI Shinichi', 18)}}的其他基金
Clinical analysis of the elastic desmoplasia abnormality in the aortic disease
主动脉疾病弹性纤维增生异常的临床分析
- 批准号:
25462165 - 财政年份:2013
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental studies on distribution of energy release rate among branch cracks in rapid crack bifurcation
裂纹快速分叉时分支裂纹间能量释放率分布的实验研究
- 批准号:
24560097 - 财政年份:2012
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Retold Stories of Shakespeare's History Plays and History Education in the Late 19th and Early 20th Centuries
19世纪末20世纪初莎士比亚历史剧的重述与历史教育
- 批准号:
23720145 - 财政年份:2011
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of elastic fiber dysplasia on aortic aneurysm outbreak aiming at tailor-made medicine.
弹力纤维发育不良对主动脉瘤暴发的研究旨在量身定制药物。
- 批准号:
22591549 - 财政年份:2010
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shakespeare's History Plays for Children in the Late 19^<th> and Early 20^<th> Centuries
19世纪末20世纪初的儿童莎士比亚历史剧
- 批准号:
20820042 - 财政年份:2008
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Young Scientists (Start-up)
Development of New Therapeutic Agent for Periodontal Regeneration
牙周再生新治疗剂的开发
- 批准号:
19791626 - 财政年份:2007
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Experiment on Breaking CaCO3 Specimen by Underwater Focusing Shock Wave Induced by Pulsed laser Irradiation
脉冲激光辐照水下聚焦冲击波破碎碳酸钙试件实验
- 批准号:
19560090 - 财政年份:2007
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental Studies on Laser Induced Underwater Converging Shock Waves Based Generated by Pseudo Phase Conjugate Method
伪相位共轭法产生激光诱导水下汇聚冲击波的实验研究
- 批准号:
17560146 - 财政年份:2005
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental Studies on Bifurcation Process of Fast Propagating Cracks in Araldite B and Homallite 100
Araldite B和Homallite 100中快速扩展裂纹分叉过程的实验研究
- 批准号:
14550076 - 财政年份:2002
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental Studies on Energy Release Rate and Bifurcation Process of Fast Propagating Cracks
快速扩展裂纹能量释放速率及分叉过程的实验研究
- 批准号:
12650082 - 财政年份:2000
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Generic Flows, Ricci Curvature, Heegaard Splittings, and Nodal Sets
通用流、Ricci 曲率、Heegaard 分裂和节点集
- 批准号:
1404540 - 财政年份:2015
- 资助金额:
$ 0.58万 - 项目类别:
Continuing Grant
The mapping class groups of Heegaard splittings
Heegaard 分裂的映射类组
- 批准号:
26800028 - 财政年份:2014
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research on distances of Heegaard splittings of 3-manifolds and bridge splittings of links
三流道Heegaard分裂距离及连杆桥分裂的研究
- 批准号:
25887039 - 财政年份:2013
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
3-Manifolds: Heegaard Splittings, the Curve Complex, and Hyperbolic Geometry
3-流形:Heegaard 分裂、复合曲线和双曲几何
- 批准号:
1308209 - 财政年份:2013
- 资助金额:
$ 0.58万 - 项目类别:
Standard Grant
Heegaard Splittings, Knots and 3-Manifolds
Heegaard 分裂、结和 3 流形
- 批准号:
1207765 - 财政年份:2012
- 资助金额:
$ 0.58万 - 项目类别:
Standard Grant
The Geometry and Topology of Heegaard Splittings
Heegaard 分裂的几何和拓扑
- 批准号:
1006369 - 财政年份:2010
- 资助金额:
$ 0.58万 - 项目类别:
Standard Grant
EAPSI: Alpha-sloped Heegaard splittings and the generalized Berge conjecture
EAPSI:阿尔法斜 Heegaard 分裂和广义 Berge 猜想
- 批准号:
1015083 - 财政年份:2010
- 资助金额:
$ 0.58万 - 项目类别:
Fellowship Award
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
- 批准号:
0939587 - 财政年份:2008
- 资助金额:
$ 0.58万 - 项目类别:
Continuing Grant
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
- 批准号:
0706878 - 财政年份:2007
- 资助金额:
$ 0.58万 - 项目类别:
Continuing Grant
Knots, Heegaard Splittings and Width Complexes
结、Heegaard 裂口和宽度复合体
- 批准号:
0603736 - 财政年份:2006
- 资助金额:
$ 0.58万 - 项目类别:
Continuing Grant