Handlebody splittings of 3-manifolds with bounday

带边界的 3 歧管手柄体分裂

基本信息

  • 批准号:
    10640094
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

We call a compact, connected, orientable 3-manifold M with nonempty boundary ∂M a bordered 3-manifold. A bordered 3-manifold H is said to be a handlebody of genus g iff H is the disk-sum (= the boundary connected-sum) of g copies of the solid-torus.It is well-known that a closed (=compact, without boundary) , connected, orientable 3-manifold M is decomposed into two homeomorphic handlebodies ; and such a splitting is called a Heegaard splitting for M.On the other hand, in 1970 J. S. Downig proved that every bordered 3-manifold can be decomposed into two homeomorphic handlebodies, and L. G. Roeling discoursed on these decompositions for bordered 3-manifolds with connected boundary. The research results are (1) to report the Downing's results in slightly modified forms, (2) to generalize the Roeling's results to borderd 3-manifolds with several boundaries, (3) to formulate a Haken type theorem for these decompositions in the way of Casson and Gordon, and (4) to discuss another Haken type theorem for these decomposition with essential proper disks.
我们称一个紧的,连通的,可定向的具有非空边界∂M的3流形M为有边界的3流形。一个有边界的3流形H被称为g属的柄体,如果H是固体环面的g个拷贝的盘和(=边界连通和)。众所周知,一个闭合的(紧的,无边界的),连通的,可定向的3-流形M被分解成两个同胚的柄体;另一方面,j.s. Downig在1970年证明了每一个有边3流形都可以分解为两个同胚柄体,L. G. Roeling讨论了具有连通边界的有边3流形的分解。研究结果有:(1)以稍作修改的形式报道了Downing的结果;(2)将Roeling的结果推广到具有多个边界的有边3流形;(3)用Casson和Gordon的方法给出了这些分解的一个Haken型定理;(4)讨论了这些分解的另一个带本质固有盘的Haken型定理。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shin'ichi Suzuki: "Handlebody splittings of compact 3-manifolds with boundary"Proceedings of Workshop Knots 1999,. (2000)
Shinichi Suzuki:“带有边界的紧凑 3 歧管的手柄体分裂”,Workshop Knots 1999 年论文集,。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shin'ichi Suzuki: "Handlebody splittings of compact 3-manifolds with boundary"Proceedings "Knot Theory" (ed. M. Sakuma). 323-330 (2000)
Shinichi Suzuki:“带边界的紧凑 3 流形的手柄体分裂”论文集“结理论”(M. Sakuma 编辑)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shinichi Suzuki: "Handlebody splittings of compact 3-manifolds with boundary"Proceedings of Workshop Knots Theory 1999, ed. M. Sakuma. 323-330 (2000)
Shinichi Suzuki:“带边界的紧凑 3 流形的手柄体分裂”Proceedings of Workshop Knots Theory 1999,编辑。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
鈴木晋一: "コンパクト境界付き3次元多様体のハンドル体分解" 早稲田大学教育学部学術研究(数学編). 46号. (1998)
铃木真一:“处理紧有界3维流形的场分解”早稻田大学教育学部学术研究(数学版)第46期。(1998年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUZUKI Shinichi其他文献

SUZUKI Shinichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUZUKI Shinichi', 18)}}的其他基金

Clinical analysis of the elastic desmoplasia abnormality in the aortic disease
主动脉疾病弹性纤维增生异常的临床分析
  • 批准号:
    25462165
  • 财政年份:
    2013
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental studies on distribution of energy release rate among branch cracks in rapid crack bifurcation
裂纹快速分叉时分支裂纹间能量释放率分布的实验研究
  • 批准号:
    24560097
  • 财政年份:
    2012
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Retold Stories of Shakespeare's History Plays and History Education in the Late 19th and Early 20th Centuries
19世纪末20世纪初莎士比亚历史剧的重述与历史教育
  • 批准号:
    23720145
  • 财政年份:
    2011
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of elastic fiber dysplasia on aortic aneurysm outbreak aiming at tailor-made medicine.
弹力纤维发育不良对主动脉瘤暴发的研究旨在量身定制药物。
  • 批准号:
    22591549
  • 财政年份:
    2010
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Shakespeare's History Plays for Children in the Late 19^<th> and Early 20^<th> Centuries
19世纪末20世纪初的儿童莎士比亚历史剧
  • 批准号:
    20820042
  • 财政年份:
    2008
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (Start-up)
Development of New Therapeutic Agent for Periodontal Regeneration
牙周再生新治疗剂的开发
  • 批准号:
    19791626
  • 财政年份:
    2007
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Experiment on Breaking CaCO3 Specimen by Underwater Focusing Shock Wave Induced by Pulsed laser Irradiation
脉冲激光辐照水下聚焦冲击波破碎碳酸钙试件实验
  • 批准号:
    19560090
  • 财政年份:
    2007
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental Studies on Laser Induced Underwater Converging Shock Waves Based Generated by Pseudo Phase Conjugate Method
伪相位共轭法产生激光诱导水下汇聚冲击波的实验研究
  • 批准号:
    17560146
  • 财政年份:
    2005
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental Studies on Bifurcation Process of Fast Propagating Cracks in Araldite B and Homallite 100
Araldite B和Homallite 100中快速扩展裂纹分叉过程的实验研究
  • 批准号:
    14550076
  • 财政年份:
    2002
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental Studies on Energy Release Rate and Bifurcation Process of Fast Propagating Cracks
快速扩展裂纹能量释放速率及分叉过程的实验研究
  • 批准号:
    12650082
  • 财政年份:
    2000
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Generic Flows, Ricci Curvature, Heegaard Splittings, and Nodal Sets
通用流、Ricci 曲率、Heegaard 分裂和节点集
  • 批准号:
    1404540
  • 财政年份:
    2015
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Continuing Grant
The mapping class groups of Heegaard splittings
Heegaard 分裂的映射类组
  • 批准号:
    26800028
  • 财政年份:
    2014
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on distances of Heegaard splittings of 3-manifolds and bridge splittings of links
三流道Heegaard分裂距离及连杆桥分裂的研究
  • 批准号:
    25887039
  • 财政年份:
    2013
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
3-Manifolds: Heegaard Splittings, the Curve Complex, and Hyperbolic Geometry
3-流形:Heegaard 分裂、复合曲线和双曲几何
  • 批准号:
    1308209
  • 财政年份:
    2013
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Standard Grant
Heegaard Splittings, Knots and 3-Manifolds
Heegaard 分裂、结和 3 流形
  • 批准号:
    1207765
  • 财政年份:
    2012
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Standard Grant
The Geometry and Topology of Heegaard Splittings
Heegaard 分裂的几何和拓扑
  • 批准号:
    1006369
  • 财政年份:
    2010
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Standard Grant
EAPSI: Alpha-sloped Heegaard splittings and the generalized Berge conjecture
EAPSI:阿尔法斜 Heegaard 分裂和广义 Berge 猜想
  • 批准号:
    1015083
  • 财政年份:
    2010
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Fellowship Award
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
  • 批准号:
    0939587
  • 财政年份:
    2008
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Continuing Grant
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
  • 批准号:
    0706878
  • 财政年份:
    2007
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Continuing Grant
Knots, Heegaard Splittings and Width Complexes
结、Heegaard 裂口和宽度复合体
  • 批准号:
    0603736
  • 财政年份:
    2006
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了