Renormarization of two dimensional random fields with rich symmetry

具有丰富对称性的二维随机场的重整化

基本信息

  • 批准号:
    10640122
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

The aim of the present research project is to study conformally invariant random fields which arises as unique solution of inhomogeneous Cauchy-Riemann equation. The upper half space in the complex plain parameterizes the conformal structure of the two dimensional torus on which the modular group acts. The latter action yields the modular covariance of the random fields. As a consequence, the moment functions of the random field evaluated at rational points are automorphic. In several cases one can prove that the moment functions are actually modular functions. With the help of the expression of the solution in terms of elliptic functions, it is possible to construct functionals, called the renormalized product, of the field with higher weight relative to the modular group action. This extends the class of modular functions which admits integral representation by the random field. This is related to the fact that there exist a large class of local functionals, called the Wick products, in two dimensional quantum field theory. Their existence reflects the logarithmic singularity of the Green function. The origin of the rather mild singularity is the conformal structure of the two dimensional space. So it is natural to ask how the conformal structure determines the renonnalized products and how the conformal structure determines class of modular functions which admits integral representation. A natural way to attack these problem is as follows : Study the action of the modular group on the configuration space of the pair of the evaluation points and the wight of the renormalized products and the action of the modular group on the cusps. So far the space of modular forms spanned by Eisenstein series are studied and it is proved that Eisenstein series are represented by moments of the random fields provided the weight is not greater than 10.
本研究项目的目的是研究作为非齐次柯西-黎曼方程的唯一解而出现的共形不变随机场。复平面中的上半空间参数化模群作用的二维环面的共形结构。后一个动作产生随机场的模协方差。因此,在有理点处计算的随机场的矩函数是自守的。在某些情况下,我们可以证明矩函数实际上是模函数。借助椭圆函数的解表达,可以构造相对于模群作用具有更高权重的域的泛函(称为重整化积)。这扩展了模函数的类别,允许随机场进行积分表示。这与二维量子场论中存在一大类局域泛函(称为威克积)有关。它们的存在反映了格林函数的对数奇异性。相当温和的奇点的起源是二维空间的共形结构。因此,很自然地要问共形结构如何确定重整化产物以及共形结构如何确定允许积分表示的模函数的类。解决这些问题的自然方法如下:研究模群对评估点对的配置空间和重正化乘积的权重的作用以及模群对尖点的作用。至此,我们对爱森斯坦级数跨越的模形式空间进行了研究,并证明了在权重不大于10的情况下,爱森斯坦级数可以用随机场的矩来表示。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Iwata: "Markov property and cokernels of local oterators"J.London Math.Soc.. 56. 657-672 (1997)
K.Iwata:“马尔可夫性质和本地操作者的核心”J.London Math.Soc.. 56. 657-672 (1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Iwata: "Markov property and cokernek of local operators"J. London Math. Soc.. 56. 657-672 (1997)
K. Iwata:“本地运营商的马尔可夫性质和 cokernek”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Iwata: "Markov property and cokernels of local operators" J.London Math Soc.56. 657-672 (1997)
K.Iwata:“马尔可夫性质和本地运营商的核心”J.London Math Soc.56。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IWATA Koichiro其他文献

IWATA Koichiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IWATA Koichiro', 18)}}的其他基金

Deformation of 2-dimensional diffusion processes which preserves recurrence
保持重现的二维扩散过程的变形
  • 批准号:
    12640127
  • 财政年份:
    2000
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Breaking Mechanism of Water Surface and Detailed Structure of Wave Breaking-Caused Air-Entrained Turbulence
水面破碎机理及波浪破碎引起的空气湍流详细结构
  • 批准号:
    11450188
  • 财政年份:
    1999
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On estimation method of diffraction forces on cylindrical structures in multi-directional waves
多向波中圆柱结构绕射力的估计方法
  • 批准号:
    08555128
  • 财政年份:
    1996
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Fundamental Study on Breaking Limit and Breaking Process of Multidirectional Random Wave.
多向随机波突破极限及突破过程的基础研究。
  • 批准号:
    08455229
  • 财政年份:
    1996
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on run and total run lengths of breaking waves in irregular wave trains.
不规则波列中破碎波的游程和总游程长度研究。
  • 批准号:
    60550360
  • 财政年份:
    1985
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
  • 批准号:
    2337830
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Continuing Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
  • 批准号:
    2401152
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
  • 批准号:
    23K19018
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Modular forms of half-integral weight and representations of metaplectic groups
半积分权的模形式和超群的表示
  • 批准号:
    23KJ1824
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Slopes of Modular Forms and Moduli Stacks of Galois Representations
合作研究:伽罗瓦表示的模形式和模栈的斜率
  • 批准号:
    2302284
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Algebraic study of L functions of modular forms of several variables and differential operators
多变量模形式的L函数和微分算子的代数研究
  • 批准号:
    23K03031
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Arithmetic Properties of Modular Forms and Hypergeometric Systems
模形式和超几何系统的算术性质
  • 批准号:
    2302531
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
The Geometry of Quasi-modular Forms
拟模形式的几何
  • 批准号:
    2302548
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Connections of (quasi)modular forms to multiple zeta values and their finite analogues
(准)模形式与多个 zeta 值及其有限类似物的连接
  • 批准号:
    23K03030
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Congruences between modular forms, Galois representations, and arithmetic consequences
模形式、伽罗瓦表示和算术结果之间的同余
  • 批准号:
    2301738
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了