Asymptotic Behavior of solutions to viscous hyperbolic conservation laws
粘性双曲守恒定律解的渐近行为
基本信息
- 批准号:10640216
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research we have considered one-dimensional compressible viscous flows. One is in the porous media and the viscous effect comes from the friction, so that the equations become the p-system with damping. The other has a usual Newton viscosity and the equations become the p-system with viscosity.It was known that the solution to the Cauchy problem for the p-system with damping behaves likely the diffusion wave, the solution to the corresponding parabolic equation due to the Darcy law (Hsiao, Liu etc.). Its convergence rates were also known by applying the Green function for the parabolic equation (Nishihara). We have obtained the convergence rates in several situations. For more general systems the coefficients becomes variable and hence we introduced the approximate Green function and obtained the desired results (Nishihara-Wang-Yang, Nishihara-Nishikawa). For the initial-boundary value problem on the half line we have investigated the boundary effect (Nishihara-Yang). This method has been applied to the thermoelastic system with dissipation (Nishihara-Nishibata).To investigate the p-system with viscosity, it is basic to do the Burgers equation. Depending on the flux and endstates of the data, solutions to the Cauchy problem are expected to tend to the rarefaction wave, the viscous shock wave or their superposition. In this research the global stability of the viscous shock wave and the boundary effect have been obtained (Nishihara-Zhao, Nishihara). For the original p-system with viscosity we have considered the inflow problem proposed by a joint researcher, A.Matsumura. He gave all conjectures of asymptotic behaviors, in which he introduced a new wave called a boundary layer solution. The stabilities of the boundary layer solution and the superposition of that and the rarefaction waves are rigorously proved (Matsumura-Nishihara). The stability of superposition of the boundary layer solution and viscous shock wave is remained open.
在这项研究中,我们考虑了一维可压缩粘性流动。一种是在多孔介质中,由于摩擦力的粘性作用,使得方程组成为带阻尼的p-系统。另一个方程组具有通常的牛顿粘性,方程组成为具有粘性的p-方程组,已知具有阻尼的p-方程组的Cauchy问题的解表现为扩散波,而相应的抛物方程的解由于Darcy定律(Hsiao,Liu等)而表现为扩散波。它的收敛速度也是已知的应用绿色函数的抛物方程(西原)。我们得到了几种情况下的收敛速度。对于更一般的系统,系数变得可变,因此我们引入了近似的绿色函数,并获得了所需的结果(Nishihara-Wang-Yang,Nishihara-Nishikawa)。对于半直线上的初边值问题,我们研究了边界效应(Nishihara-Yang)。将该方法应用于具有耗散的热弹性系统(Nishihara-Nishibata),研究具有粘性的p-系统,首先要求解Burgers方程。根据数据的通量和端态,柯西问题的解预计将倾向于稀疏波、粘性激波或它们的叠加。在这项研究中,粘性激波的整体稳定性和边界效应已经得到(西原赵,西原)。对于原始的p-系统的粘性,我们已经考虑了流入问题提出的联合研究员,A. Matsumura。他给出了所有的渐近行为,其中他介绍了一个新的波称为边界层解决方案。严格证明了边界层解的稳定性以及边界层解与稀疏波的叠加(Matsumura-Nishihara)。边界层解与粘性激波叠加的稳定性仍然是开放的。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Nishihara and T.Yang: "Boundary effect on asymptotic behavior of solutions to the p-system with linear damping"J.Differential Equations. 156. 439-458 (1999)
K.Nishihara 和 T.Yang:“线性阻尼 p 系统解的渐近行为的边界效应”J.微分方程。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Nishihara,M.Nishikawa: "Asymptotic behavior of solutions to the system of compressible adiabatic flow through porous media"SIAM J.Math.Anal.. (掲載決定).
K.Nishihara、M.Nishikawa:“多孔介质可压缩绝热流系统解的渐近行为”SIAM J.Math.Anal..(已出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Nishihara,H.Zhao: "Convergence rate to viscous shock profile for general scalar viscous conservation laws with large initial disturbance"J.Math.Soc.Japan. 54巻(掲載決定). (2001)
K. Nishihara、H. Zhao:“具有大初始扰动的一般标量粘性守恒定律的粘性激波轮廓的收敛率”J.Math.Soc.Japan 第 54 卷(已决定出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Nishihara,S.Nishibata: "Large time behavior of solutions to the Cauchy problem for one-dimensional Thermoelastic system with dissipation"J.Inequalities and Applications. (2001)
K.Nishihara,S.Nishibata:“一维耗散热弹性系统柯西问题解的大时间行为”J.不等式与应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Nishihara: "Boundary effect on stationary viscous shocke wave for scalar viscous conservation laws"J.Math.Anal.Appl.. 255. 535-550 (2001)
K.Nishihara:“标量粘性守恒定律对稳态粘性冲击波的边界效应”J.Math.Anal.Appl.. 255. 535-550 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIHARA Kenji其他文献
NISHIHARA Kenji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIHARA Kenji', 18)}}的其他基金
Diffusion phenomenon and Wave phenomenon of solutions to the damped wave equation
阻尼波动方程解的扩散现象和波动现象
- 批准号:
25400184 - 财政年份:2013
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diffusion phenomenon of solutions for the damped wave equation
阻尼波动方程解的扩散现象
- 批准号:
20540219 - 财政年份:2008
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability of nonlinear waves in viscous conservation system together with diffusion phenomena of solutions of damped wave equation
粘性守恒系统中非线性波的稳定性及阻尼波动方程解的扩散现象
- 批准号:
16540206 - 财政年份:2004
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability of nonlinear waves for hyperbolic conservation laws will viscosity
双曲守恒定律非线性波的稳定性将粘性
- 批准号:
13640223 - 财政年份:2001
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Diffusion-Wave and Photoacoustic Sciences and Technologies
扩散波和光声科学与技术
- 批准号:
CRC-2015-00184 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Canada Research Chairs
Diffusion-Wave And Photoacoustic Sciences And Technologies
扩散波与光声科学与技术
- 批准号:
CRC-2015-00184 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Canada Research Chairs
Mathematical analysis for fractional diffusion-wave equations and related inverse problems
分数扩散波方程及相关反问题的数学分析
- 批准号:
20K14355 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Diffusion-Wave and Photoacoustic Sciences and Technologies
扩散波和光声科学与技术
- 批准号:
CRC-2015-00184 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Canada Research Chairs
Diffusion-Wave and Photoacoustic Sciences and Technologies
扩散波和光声科学与技术
- 批准号:
CRC-2015-00184 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Canada Research Chairs
Mathematical analysis of diffusion and diffusion wave property for the solutions to the system of the viscous fluid flow
粘性流体流动系统解的扩散和扩散波性质的数学分析
- 批准号:
18K03368 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diffusion-Wave and Photoacoustic Sciences and Technologies
扩散波和光声科学与技术
- 批准号:
CRC-2015-00184 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Canada Research Chairs
Diffusion-Wave and Photoacoustic Sciences and Technologies
扩散波和光声科学与技术
- 批准号:
CRC-2015-00184 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Canada Research Chairs
Diffusion-Wave and Photoacoustic Sciences and Technologies
扩散波和光声科学与技术
- 批准号:
CRC-2015-00184 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Canada Research Chairs
Canada Research Chair in Diffusion-Wave Sciences and Technologies
加拿大扩散波科学与技术研究主席
- 批准号:
1208942-2008 - 财政年份:2015
- 资助金额:
$ 1.09万 - 项目类别:
Canada Research Chairs