Minimum Synthesis and Learning Algorithm for A Hybrid Nonlinear Predictor

混合非线性预测器的最小综合和学习算法

基本信息

  • 批准号:
    10650357
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

Now a day, we have a lot of problems, environmental disruption, environmental pollution, economic crisis, population problem, natural disaster, nature conservation, and so on. In order to solve these problems, it is very important to analyze progress of these phenomena. These phenomena can be regarded as time series. Mainly they are nonlinear time series. So, nonlinear prediction becomes very important.(1) A Nonlinear PredictorIn this research project, we have developed a hybrid nonlinear predictor, which combines a neural network and a feed-forward linear predictor. Since the neural network has linear output unit, most of nonlinear part and some linear part can be predicted by the neural network. The remaining part is predicted by the linear predictor.(2) Learning AlgorithmsAn improved learning algorithm has been proposed, which separately optimize the neural network and the linear predictor in this order. An enhanced learning algorithm has been proposed for noisy nonlinear time series prediction.(3) Nonlinearity Analysis of Time SeriesPrediction is the mapping from the past sample x(n-1)=[x(n-1),x(n-2),..,x(n-N)] to the next sample x(n). When the past samples x(nィイD21ィエD2-1) and x(nィイD22ィエD2-1) are similar, however, the next samples x(nィイD21ィエD2) and x(nィイD22ィエD2) are far from to each other, then, nonlinearity of this time series is high. A measure, which can evaluate this property has been introduced.(4) Prediction of Real Nonlinear Time SeriesThe proposed method was applied to many the real nonlinear time series, including Chaos, water levels of some lake, fog generation, and so on. The proposed hybrid nonlinear predictor demonstrated good performance compared with the conventional methods.
当今世界,我们面临着许多问题,环境破坏、环境污染、经济危机、人口问题、自然灾害、自然保护等,为了解决这些问题,分析这些现象的进展是非常重要的。这些现象可以看作是时间序列。它们主要是非线性时间序列。因此,非线性预测变得非常重要。(1)一个非线性预测器在这个研究计画中,我们发展了一个混合非线性预测器,它结合了一个神经网路和一个前馈线性预测器。由于神经网络具有线性输出单元,因此大部分非线性部分和部分线性部分可以由神经网络预测。剩余部分由线性预测器预测。(2)学习算法提出了一种改进的学习算法,该算法依次对神经网络和线性预测器分别进行优化。提出了一种用于含噪非线性时间序列预测的增强学习算法。(3)时间序列的非线性分析预测是过去样本x(n-1)=[x(n-1),x(n-2),.,x(n-N)]到下一个样本x(n)。然而,当过去的样本x(n次采样D21次采样D2-1)和x(n次采样D22次采样D2-1)相似时,接下来的样本x(n次采样D21次采样D2)和x(n次采样D22次采样D2)彼此远离,则该时间序列的非线性高。介绍了一种评价这种性质的方法。(4)真实的非线性时间序列的预测将该方法应用于混沌、湖泊水位、雾的产生等真实的非线性时间序列,与传统的预测方法进行了比较,结果表明该方法具有良好的预测性能。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. Keeni: "Automatic generation of initial weights and estimation of hidden units for pattern classification using neural networks"Proc. 14th. Int. Conf. on Pattern Recognition. (1998)
K. Keeni:“使用神经网络自动生成初始权重并估计用于模式分类的隐藏单元”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ashraf A. M. Khalaf: "A learning algorithm for a hybrid nonlinear predictor applied to noisy nonlinear time series"Proc. IJCNN'99. 3. 1590-1593 (1999)
Ashraf A. M. Khalaf:“应用于噪声非线性时间序列的混合非线性预测器的学习算法”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Keeni, H. Simodaira and K. Nakayama: "Automatic generation of initial weights and estimation of hidden units for pattern classification using neural networks"Proc. 14th Int. Conf. on Pattern Recognition, Australia, Aug.. (1998)
K. Keeni、H. Simodaira 和 K. Nakayama:“使用神经网络自动生成初始权重并估计用于模式分类的隐藏单元”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ashraf.A.M.Khalaf: "Time series prediction using a hybrid model of neural network and FIR filter" Proc.of IJCNN'98. 1975-1980 (1998)
Ashraf.A.M.Khalaf:“使用神经网络和 FIR 滤波器的混合模型进行时间序列预测”Proc.of IJCNN98。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. keeni, K. Nakayama and H. Shimodaira: "Automatic generation of initial weights and target outputs of multilayer neural networks and its application to pattern classification"Proc. The 5th Int. Conf. on Neural Information Processing Japan. 1622-1625 (19
K. Keini、K. Nakayama 和 H. Shimodaira:“多层神经网络初始权重和目标输出的自动生成及其在模式分类中的应用”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAYAMA Kenji其他文献

NAKAYAMA Kenji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAYAMA Kenji', 18)}}的其他基金

Research of BCI system based on neural networks with high generalization and multi-channel orthogonal components
基于高泛化多通道正交分量神经网络的脑机接口系统研究
  • 批准号:
    21560393
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Preventive medical screening involving familial genetic testing of ATP7B in order to discover presymptomatic patients in families with Wilson's disease patients.
预防性医学筛查,涉及 ATP7B 家族基因检测,以便发现威尔逊氏病患者家族中出现症状前的患者。
  • 批准号:
    19590658
  • 财政年份:
    2007
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Over-complete Blind Source Separation for Nonlinesr Convolutive Mixtures
非线性卷积混合的过完备盲源分离
  • 批准号:
    17560335
  • 财政年份:
    2005
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Blind Source Separation and Estimation Methods for Nonlinear Convoltive Mixtures
非线性卷积混合的盲源分离和估计方法
  • 批准号:
    15560323
  • 财政年份:
    2003
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on Optimum Design method for multilayr Neural Net works with Minimum Network Sige
最小网络规模多层神经网络优化设计方法研究
  • 批准号:
    07650422
  • 财政年份:
    1995
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2318032
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2206675
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Learning Complex Control Laws for Nonlinear Systems Under Uncertainty Using Deep Neural Networks
使用深度神经网络学习不确定性下非线性系统的复杂控制律
  • 批准号:
    RGPIN-2019-05499
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Complex Control Laws for Nonlinear Systems Under Uncertainty Using Deep Neural Networks
使用深度神经网络学习不确定性下非线性系统的复杂控制律
  • 批准号:
    RGPIN-2019-05499
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Complex Control Laws for Nonlinear Systems Under Uncertainty Using Deep Neural Networks
使用深度神经网络学习不确定性下非线性系统的复杂控制律
  • 批准号:
    RGPIN-2019-05499
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Learning Complex Control Laws for Nonlinear Systems Under Uncertainty Using Deep Neural Networks
使用深度神经网络学习不确定性下非线性系统的复杂控制律
  • 批准号:
    DGECR-2019-00045
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement
Modeling and Analysis of Nonlinear Geometry of Nonstationary Stochastic Models of Deep Neural Networks
深度神经网络非平稳随机模型的非线性几何建模与分析
  • 批准号:
    19H04163
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Learning Complex Control Laws for Nonlinear Systems Under Uncertainty Using Deep Neural Networks
使用深度神经网络学习不确定性下非线性系统的复杂控制律
  • 批准号:
    RGPIN-2019-05499
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
  • 批准号:
    1841805
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
  • 批准号:
    1664426
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了