Effect of Film Thickness of Layer-Structured Oxide Thin Films on Lithium Insertion/Extraction and Semiconductive Properties
层状氧化物薄膜的膜厚对锂嵌入/脱嵌和半导体性能的影响
基本信息
- 批准号:10650803
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
LiMィイD2xィエD2OィイD2yィエD2 (M=Mn, Ni, Co) thin films were fabricated by dipping Au wire into the citric complex during the synthesis process (DICC method). Only the LiCoOィイD22ィエD2 thin film was obtained by the in situ oxidation in molten carbonate. However, DICC process enabled us to fabricate the LiCoOィイD22ィエD2, LiMnィイD22ィエD2OィイD24ィエD2 and LiNiOィイD22ィエD2 thin films onto the Au. In case of LiCoOィイD22ィエD2 and LiNiOィイD22ィエD2 thin films, lithium extraction was easy but hard to insert lithium it. On the other hand, lithium extraction/insertion was quite easy for LiMnィイD22ィエD2OィイD24ィエD2 thin film up to 1 V/s scan rate in cyclic voltammetry with excellent cyclability. This result is really amazing that the charging/discharging rate of theoretical capacity within 10 seconds is possible principally but the recent state-of-the-art battery technology needs an hour. However, similar reversible charging/discharging reaction was obtained at very slow scan rate (0.01 mV/s) when the composite electrode o … More f LiMnィイD22ィエD2OィイD24ィエD2 was applied. This difference is a clear indication that the carbon conductive additive in the composite electrode enhances the electronic conductivity of active materials and passivated film formed on the Al current collector. However, it makes no potential gradient inside the active material, and hence it reduces the lithium ion conduction inside the solid phase. In case of thin film electrode, potential difference between electrolyte solution and current collector exists at the active material, and this enhances the lithium ion conductivity inside the active material solid phase.Optical current measurements were carried out using lock-in amplifier synchronized with the optical chopper. Unfortunately, we could not observe any traces of optical current. However, the formation of barrier type AlFィイD23ィエD2 passivation film was found at the Al current collector in the organic solution with LiPFィイD26ィエD2 and LiBFィイD24ィエD2 electrolyte by the high-potential field mechanism, which was similar to the anodic oxide film formation in aqueous solution. Less
在合成过程中,通过在柠檬酸络合物中浸渍Au丝的方法制备了LiMィイD2XィエD2OィイD2yィエD2(M=Mn,Ni,Co)薄膜。在熔融碳酸盐中原位氧化只得到了LiCoOィイD22ィエD2薄膜。然而,我们能够在Au上制备LiCoOィイD22ィエD2、LiMnィイD22ィエD2OィイD24ィエD2和LiNiOィイD22ィエD2薄膜。在LiCoOィイD22ィエD2和LiNiOィイD22ィエD2薄膜的情况下,锂的提取很容易,但很难插入锂。另一方面,在循环伏安实验中,LiMnィイD22ィエD2OィイD24ィエD2薄膜在高达1V/S的扫描速率下,锂的提取/插入相当容易,具有良好的循环性能。这个结果真的很令人惊讶,理论容量的充放电速度在10秒内是可能的,但最近最先进的电池技术需要一个小时。然而,当复合电极为…时,在很慢的扫描速度(0.01mV/S)下也得到了类似的可逆充放电反应使用更多的ィイD22ィエD2OィイD24ィエD2。这一差异清楚地表明,复合电极中的碳导电剂提高了铝集电体上形成的活性材料和钝化膜的电子导电性。然而,它在活性材料内部不会产生电位梯度,因此它降低了固相内的锂离子传导。对于薄膜电极,在活性物质处存在电解质溶液和集电体之间的电势差,从而提高了活性材料固相内的锂离子电导率。不幸的是,我们没有观察到任何光学电流的痕迹。而在含LiPFィイD26ィエD2和LiPFィイD24ィエD2电解液的有机溶液中,铝集电体上的AlFィイD23ィエD2钝化膜是通过高场机制形成的,这与水溶液中的阳极氧化膜的形成类似。较少
项目成果
期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
仁科辰夫: "Conductivity Controlling of Oxide Scale on Corroded Metal Components by Applying Hetero-contact Technique"Proceedings of the Fifth International Symposium on Carbonate Fuel Cell Technology. ECS Proc.Vol.99-20. 142-149 (1999)
Tatsuo Nishina:“通过应用异质接触技术控制腐蚀金属部件上的氧化皮”,第五届碳酸盐燃料电池技术国际研讨会论文集,卷 142-149(1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
立花和宏: "Impurity Effect in Aluminum Cathode Current Collector on Charging/Discharging Performance of Lithium Secondary Battery"Proceedings of the Symposium on Lithium Batteries. ECS Proc.Vol.99-25(in print). (2000)
Kazuhiro Tachibana:“铝阴极集流体中的杂质对锂二次电池充电/放电性能的影响”ECS Proc.Vol.99-25(印刷中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiro Tachibana: "Development of in situ a.c. Impedance Measurement System under Constant-Current Conditions and Its Application to Galvanostatic Discharge of Electrolytic Manganese Dioxide in Alkaline Solution"Journal of Power Sources. 74. 29-33 (1998
Kazuhiro Tachibana:“恒流条件下原位交流阻抗测量系统的开发及其在碱性溶液中电解二氧化锰恒电流放电中的应用”电源杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
立花和宏: "Development of In situ a.c. impedance measurement system under constant-Currentinditions and its application to galvanostatic discharge of electrclytic manganese dioxide in alkaline solution" Journal of Power Sources. 74. 29-33 (1998)
Kazuhiro Tachibana:“恒流条件下原位交流阻抗测量系统的开发及其在碱性溶液中电解二氧化锰恒流放电中的应用”《电源杂志》74. 29-33 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
立花和宏: "アジピン酸アンモニウム水溶液中における微少電極を用いたアルミニウムの陽極酸化"Electrochemistry. 67. 780-783 (1999)
Kazuhiro Tachibana:“在己二酸铵水溶液中使用微电极对铝进行阳极氧化”电化学 67. 780-783 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHINA Tatsuo其他文献
NISHINA Tatsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHINA Tatsuo', 18)}}的其他基金
Enhancement of Conductivity for Organic Semiconductor device by the Molecular Arrangement Caused by the High Dipole Moment Organics
高偶极矩有机物引起的分子排列增强有机半导体器件的导电性
- 批准号:
25620192 - 财政年份:2013
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Safety Evaluation of Lithium Ion Secondary Batteries by using Ultramicroelectrodes and Infrared Microscopy
利用超微电极和红外显微镜评价锂离子二次电池的安全性
- 批准号:
23310107 - 财政年份:2011
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on Recycling and Reuse of Lithium Ion Secondary Batteries
锂离子二次电池回收再利用的研究
- 批准号:
20360409 - 财政年份:2008
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis and Application on the Functions of Oxide/Carbon Hetero-Junctions during Electrochemical Insertion/Extraction
氧化物/碳异质结电化学插入/脱出过程的分析及应用
- 批准号:
12650804 - 财政年份:2000
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Upcycling of Spent Lithium-Ion Batteries Electrodes Towards All-Solid-State Lithium Batteries
废旧锂离子电池电极升级为全固态锂电池
- 批准号:
22KF0347 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Analysis of lithium ion transportation in lithium batteries during charging and discharging processes using ion beam operando observation
利用离子束操作观察分析锂电池充放电过程中锂离子的传输
- 批准号:
23K04424 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF Engines Development Award: Advancing the circular economy for lithium batteries (NV)
NSF 发动机开发奖:推动锂电池循环经济 (NV)
- 批准号:
2305697 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Cooperative Agreement
I-Corps: Recovery of lithium and related materials from spent lithium batteries and lithium battery industry electrode waste
I-Corps:从废旧锂电池和锂电池行业电极废料中回收锂及相关材料
- 批准号:
2323629 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
SBIR Phase II: A New Class of High-Conductivity Solid-state Composite Electrolytes for Next-Generation Lithium Batteries
SBIR II 期:用于下一代锂电池的新型高电导率固态复合电解质
- 批准号:
2111963 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Cooperative Agreement
STTR Phase II: Multi-Electron Intercalation Reactions for High Capacity Lithium Batteries
STTR 第二阶段:高容量锂电池的多电子嵌入反应
- 批准号:
2112152 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Cooperative Agreement
Hybrid electrolyte membranes for the next-generation printable all-solid lithium batteries
用于下一代可印刷全固体锂电池的混合电解质膜
- 批准号:
568645-2021 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Alliance Grants
Addressing the challenges of high-capacity electrodes for lithium batteries through coordination chemistry
通过配位化学应对锂电池高容量电极的挑战
- 批准号:
RGPIN-2021-03374 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Harnessing Mechanics for the Design of All-Solid-State Lithium Batteries
合作研究:利用力学设计全固态锂电池
- 批准号:
2152562 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Engineering Nanostructured Solid-State Electrolyte for High Performance All-Solid-State Lithium Batteries
用于高性能全固态锂电池的工程纳米结构固态电解质
- 批准号:
569037-2022 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




