Analysis and Application on the Functions of Oxide/Carbon Hetero-Junctions during Electrochemical Insertion/Extraction

氧化物/碳异质结电化学插入/脱出过程的分析及应用

基本信息

  • 批准号:
    12650804
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

Aluminum current collector of lithium secondary batteries forms compact passivated film according to the high field model in the organic electrolyte solutions including fluorine element. However, the corrosion of this passivated film and aluminum substrate increases the leak current and reduces the battery performance. Based on these points of view, the controlling of passivated film at aluminum current collector has been investigated as functions of aluminum foil purity, surface treatment, composite cathode pressing condition, electrolyte composition, and formation in the battery fabrication processes. It was clear that the charging/discharging cycle performance was improved by reducing leak current of passivated film by adding some additional metal impurities to the aluminum current collector, by applying surface heating of aluminum, by adding small amount of water to the cathode composite, and by adding oxygen donor such as water and / or LiNO_3 to the electrolyte solution.Research on cathode materials for 5 V class lithium secondary batteries is a trend in recent researches. However, the passivated film characteristic of a cathode current collector is still not well known. We investigated the anodic passivation behavior of some valve metals at such high anodic potentials in organic electrolytes for lithium secondary batteries. As a conclusion, we should use aluminum as a cathode current collector for 5 V class lithium secondary batteries since it formed a high insulating film with high tolerant voltage at the metal surface.In conclusions, Hetero-contact of passivated film on the current collector/carbon conductive additives controls the contacting resistance of the positive electrode, and this controls the total charging/discharging rate of lithium insertion/deinsertion of lithium secondary batteries.
锂二次电池的铝集电体在含氟元素的有机电解液中形成致密的钝化膜。然而,这种钝化膜和铝衬底的腐蚀增加了泄漏电流,降低了电池的性能。基于这些观点,研究了在电池制造过程中,铝箔纯度、表面处理、复合正极压制条件、电解液组成和化成对铝集电钝化膜控制的影响。通过在铝集电体中添加金属杂质、对铝进行表面加热、在正极复合材料中加入少量水、在电解液中添加给氧体等方法来降低钝化膜的泄漏电流,从而改善了充放电循环性能。5V级锂二次电池正极材料的研究是近年来研究的一个趋势。然而,阴极集电体的钝化膜特性仍不是很清楚。研究了锂二次电池用阀类金属在有机电解液中的阳极钝化行为。综上所述,铝作为5V级锂二次电池的正极集电体是可行的,因为铝在金属表面形成了一层高耐压的高绝缘膜。综上所述,集电体/碳导电添加剂上钝化膜的异质接触控制了正极的接触电阻,从而控制了锂二次电池的总充放电速率。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wang Xianming: "Lithium alloy formation at bismuth thin layer electrode and its kinetics in propylene carbonate electrolyte"Journal of Power Sources. 104. 90-96 (2002)
王先明:“铋薄层电极锂合金的形成及其在碳酸丙烯酯电解液中的动力学”,电源学报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
立花和宏: "非水電解液を用いたリチウム二次電池"日本国特許庁 特願2001-051689. (2001)
Kazuhiro Tachibana:“使用非水电解质的锂二次电池”日本专利局专利申请号2001-051689(2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
立花和宏(他5名): "リチウム電池駆動電解液中におけるアルミニウムの不働態化(1)-皮膜生成機構-"Electrochemistry. 69. 670-680 (2001)
Kazuhiro Tachibana(和其他 5 人):“锂电池供电电解质中铝的钝化 (1) - 成膜机理 -” 电化学 69. 670-680 (2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuhiro Tachibana: "Impurity Effect in Aluminum Cathode Current Collector on Charging/Discharging Performance of Lithium Secondary Battery"Proc. of the Symp. on Lithium Batteries. 99-25. 719-729 (2000)
Kazuhiro Tachibana:“铝阴极集流体中的杂质对锂二次电池充电/放电性能的影响”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
松木健三: "リチウム二次電池の性能評価の標準化"山形大学紀要(工学). 26・1. 25-32 (2000)
松木健三:“锂二次电池的性能评价的标准化”山形大学公报(工学)26・1(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHINA Tatsuo其他文献

NISHINA Tatsuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHINA Tatsuo', 18)}}的其他基金

Enhancement of Conductivity for Organic Semiconductor device by the Molecular Arrangement Caused by the High Dipole Moment Organics
高偶极矩有机物引起的分子排列增强有机半导体器件的导电性
  • 批准号:
    25620192
  • 财政年份:
    2013
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Safety Evaluation of Lithium Ion Secondary Batteries by using Ultramicroelectrodes and Infrared Microscopy
利用超微电极和红外显微镜评价锂离子二次电池的安全性
  • 批准号:
    23310107
  • 财政年份:
    2011
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on Recycling and Reuse of Lithium Ion Secondary Batteries
锂离子二次电池回收再利用的研究
  • 批准号:
    20360409
  • 财政年份:
    2008
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Effect of Film Thickness of Layer-Structured Oxide Thin Films on Lithium Insertion/Extraction and Semiconductive Properties
层状氧化物薄膜的膜厚对锂嵌入/脱嵌和半导体性能的影响
  • 批准号:
    10650803
  • 财政年份:
    1998
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Upcycling of Spent Lithium-Ion Batteries Electrodes Towards All-Solid-State Lithium Batteries
废旧锂离子电池电极升级为全固态锂电池
  • 批准号:
    22KF0347
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis of lithium ion transportation in lithium batteries during charging and discharging processes using ion beam operando observation
利用离子束操作观察分析锂电池充放电过程中锂离子的传输
  • 批准号:
    23K04424
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF Engines Development Award: Advancing the circular economy for lithium batteries (NV)
NSF 发动机开发奖:推动锂电池循环经济 (NV)
  • 批准号:
    2305697
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Cooperative Agreement
I-Corps: Recovery of lithium and related materials from spent lithium batteries and lithium battery industry electrode waste
I-Corps:从废旧锂电池和锂电池行业电极废料中回收锂及相关材料
  • 批准号:
    2323629
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
SBIR Phase II: A New Class of High-Conductivity Solid-state Composite Electrolytes for Next-Generation Lithium Batteries
SBIR II 期:用于下一代锂电池的新型高电导率固态复合电解质
  • 批准号:
    2111963
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Cooperative Agreement
STTR Phase II: Multi-Electron Intercalation Reactions for High Capacity Lithium Batteries
STTR 第二阶段:高容量锂电池的多电子嵌入反应
  • 批准号:
    2112152
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Cooperative Agreement
Hybrid electrolyte membranes for the next-generation printable all-solid lithium batteries
用于下一代可印刷全固体锂电池的混合电解质膜
  • 批准号:
    568645-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Alliance Grants
Addressing the challenges of high-capacity electrodes for lithium batteries through coordination chemistry
通过配位化学应对锂电池高容量电极的挑战
  • 批准号:
    RGPIN-2021-03374
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Harnessing Mechanics for the Design of All-Solid-State Lithium Batteries
合作研究:利用力学设计全固态锂电池
  • 批准号:
    2152562
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Engineering Nanostructured Solid-State Electrolyte for High Performance All-Solid-State Lithium Batteries
用于高性能全固态锂电池的工程纳米结构固态电解质
  • 批准号:
    569037-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了