Study on ionic conduction of solid-liquid composite electrolyte

固液复合电解质的离子传导研究

基本信息

  • 批准号:
    10650807
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

In this study, the composite that contains ceramic ionic and organic solvent is tested as an electrolyte of lithium ion battery. Two-dimensional clays (smectite) were used as ionic conductor and propylene carbonate was used as solvent. The guest cation between aluminosilicate layers of the clay was ion-exchanged by lithium with being soaked in lithium chloride solution. The composite became sticky fluid due to strong interaction between clay and solvent, then its lithium ion conductivity was measured by impedance method.The conductivity of 10ィイD1-3ィエD1Scm at room temperature was obtained for the composite. In pure liquid electrolyte, the same order of conductivity is achieved. This fact indicates that the clay particles in the composite do not prevent from smooth ionic conduction but rather enhance it. Just after preparation of the composite, no ionic species exist in the solvent. The experimental result showing such quite high ionic conduction implies the mechanism that lithium comes out from clay matrix into solvent and takes part in conduction. However, from necessity of electroneutrality, fixed amount of lithium should be accommodated in clay matrix. The conduction oath through clay and solvent is arranged not in parallel but in series. This system is an ideal single ionic conductor and its high conductivity becomes an advantage for practical battery use.The test cell containing this composite electrolyte with lithium anode and LiCoOィイD22ィエD2 cathode show reversible capacity of 70mAhgィイD1-1ィエD1 in the first cycle, the rapid loss was observed in the following ones. On the other hand, the electrolyte sandwiched two lithium sheets show good cycling behavior about lithium deposition and dissolution. This problem is, therefore, considered o stem from interfacial optimization at cathode surface. The improvement of the contact between the composite and cathode may lead to the development of safer lithium ion battery.
在本研究中,测试了含有陶瓷离子和有机溶剂的复合材料作为锂离子电池的电解质。二维粘土(蒙皂石)用作离子导体,碳酸亚丙酯用作溶剂。通过浸泡在氯化锂溶液中,粘土的铝硅酸盐层之间的客体阳离子与锂进行离子交换。由于粘土和溶剂之间的强烈相互作用,复合材料变成粘性流体,然后通过阻抗法测量其锂离子电导率。获得该复合材料在室温下的电导率为10ィイD1-3ィD1Scm。在纯液体电解质中,可以达到相同数量级的电导率。这一事实表明,复合材料中的粘土颗粒不会阻止平滑的离子传导,而是会增强它。复合材料制备完成后,溶剂中不存在离子物质。如此高的离子传导性的实验结果暗示了锂从粘土基质中脱离到溶剂中并参与传导的机制。然而,出于电中性的需要,粘土基质中应容纳固定量的锂。通过粘土和溶剂的传导誓言不是并联而是串联布置。该系统是理想的单离子导体,其高电导率成为实际电池使用的优势。含有这种复合电解质的锂阳极和LiCoOiiD22ィエD2阴极的测试电池在第一个循环中显示出70mAhgィイD1-1ィエD1的可逆容量,在随后的循环中观察到快速损失。另一方面,夹有两个锂片的电解质表现出良好的锂沉积和溶解循环行为。因此,这个问题被认为是由阴极表面的界面优化引起的。复合材料和正极之间接触的改善可能会导致更安全的锂离子电池的开发。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Imanishi: "Preparation and ^7Li NMR Study of Chemially Delithiated Li_<1-x>CoO_2(0<x<0.5)" Solid State Ionics. 118. 121-128 (1999)
N.Imanishi:“化学脱锂Li_<1-x>CoO_2(0<x<0.5)的制备和^7Li NMR研究”固态离子。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N. Imanishi: "Lithium Intercalation Behavior of Iron Cyanometallates"J. Power Sources. 81-82. 530-534 (1999)
N. Imanishi:“氰基金属铁的锂嵌入行为”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Imanishi: "Lithium Intercalation Behavior of Iron Cyanometallates" J.Power Sources. (in press).
N.Imanishi:“氰基金属铁的锂嵌入行为”J.Power Sources。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N. Imanishi: "Lithium Intercalation Behavior into Ironcyanide Complex as Positive Electrode of Lithium Secondary Battery"J. Power Sources. 79. 215-219 (1999)
N. Imanishi:“作为锂二次电池正极的铁氰化物配合物的锂嵌入行为”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Imanishi: "Lithium Intercalation Behavior of Iron Cyanometallates"J.Power Sources. 81-82. 530-534 (1999)
N.Imanishi:“氰基金属铁的锂嵌入行为”J.Power Sources。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IMANISHI Nobuyuki其他文献

IMANISHI Nobuyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IMANISHI Nobuyuki', 18)}}的其他基金

Development of electrode functions by controlling interface structure
通过控制界面结构开发电极功能
  • 批准号:
    21350115
  • 财政年份:
    2009
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
室温作動の安価なプロトン導電性固体電解質の開発
开发可在室温下运行的廉价质子传导固体电解质
  • 批准号:
    12650808
  • 财政年份:
    2000
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
  • 批准号:
    EP/Y027639/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Fellowship
RII Track-4:NSF: Spatiotemporal Modeling of Lithium-ion Battery Packs for Electric Vehicle Battery Management Systems
RII Track-4:NSF:电动汽车电池管理系统锂离子电池组的时空建模
  • 批准号:
    2327409
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
PFI-TT: Device to Recycle Scrap Cathodes in Lithium-Ion Battery Factories
PFI-TT:锂离子电池工厂废旧正极回收装置
  • 批准号:
    2314242
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
CONDUCTOR Thin and lightweight current collector for lithium-ion battery
CONDUCTOR 锂离子电池用集电体薄型、轻量
  • 批准号:
    10047927
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Feasibility Studies
Creation of high-performance all solid state lithium ion battery by using innovative dry method.
采用创新干法制造高性能全固态锂离子电池。
  • 批准号:
    23H01748
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research and development of a highly automated and safe streamlined process for increased Lithium-ion battery repurposing and recycling
研究和开发高度自动化且安全的简化流程,以增加锂离子电池的再利用和回收
  • 批准号:
    10064778
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    EU-Funded
To Develop Equipment for End-of-life Lithium-ion Battery Regeneration
开发报废锂离子电池再生设备
  • 批准号:
    10074744
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant for R&D
STTR Phase I: Novel State of Health Measurements Through Advanced Lithium-ion Battery Modeling for Secure and Scalable 2nd-Life Battery Deployment
STTR 第一阶段:通过先进的锂离子电池建模进行新颖的健康状况测量,以实现安全且可扩展的二次电池部署
  • 批准号:
    2304417
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
GR4PHITE3 (HORIZON-CL5-2022-D2-01) - Graphite resilience for lithium-Ion battery anodes through a sustainable European End-to-End supply chain
GR4PHITE3 (HORIZON-CL5-2022-D2-01) - 通过可持续的欧洲端到端供应链实现锂离子电池阳极的石墨弹性
  • 批准号:
    10073601
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    EU-Funded
Research and development of a highly automated and safe streamlined process for increased Lithium-ion battery repurposing and recycling (REBELION)
研究和开发高度自动化且安全的简化流程,以增加锂离子电池的再利用和回收(REBELION)
  • 批准号:
    10079049
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了