Effective learning strategies for acquiring new patterns of bimanual coordination
获得双手协调新模式的有效学习策略
基本信息
- 批准号:10680021
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Acquisition of a skilled movement often needs to overcome the attractors (particular movement patterns by some neural, musculo-skeletal, and biomechanical constraints in spite of performer's intention). Therefore, the present study examined what type of learning strategies are effective for acquiring a new movement effectively. A bimanual coordination task was employed as an experimental task. Subjects were required to overcome either the in-phase or anti-phase so as to acquire the 90 degree relative phase. Three learning strategies, forced response method, observational leaning, and advanced organization, were compared in Experiment 1. Both the forced response method and the observational leaning were then respectively examined in detail in Experiments 2 and 3. In Experiment 4, both skill level and presentation schedule in the observational learning were further examined. Main results were as follows. First, a most suitable strategy for the bimanual coordination task was shown to be a … More combination of advanced organization and actual physical practice. This was explained to mean that the advanced organization provided in advance the learners with whole insight into the learning processes. Second, the concentrated presentation of a learning model was found to be most effective in observational learning. It was likely that the learning model demonstrated progresses from an initial learning stage in which the learning model could not perform anything at all to the final stage in which the learning model became an expert in performing the task. The use of a learning model may thus have provided information about problem-solving processes as well as enhanced learners' motivation, because both the learning model and learners gradually improved their performance as the practice proceeded. These findings on learning strategies therefore suggested that the coordination leaning needs an engagement of learners to cognitive factors subserving motor learning more than the parameter learning, even though the task used in coordination learning is largely influenced by the intrinsic attractors. Less
获得熟练的动作通常需要克服吸引子(通过一些神经、肌肉骨骼和生物力学的限制而产生的特定运动模式,而不是表演者的意图)。因此,本研究考察了哪种类型的学习策略能有效地获得一种新的动作。采用双手协调任务作为实验任务。受试者被要求克服同相或反相,以获得90度相对相位。实验一比较了强迫反应法、观察性学习和高级组织学习三种学习策略。实验二和实验三分别考察了强迫反应法和观察性学习。实验四进一步考察了观察性学习中的技能水平和呈现进度。主要研究结果如下。首先,对于双手协调任务,最合适的策略是…更多地将先进的组织与实际的体育实践相结合。据解释,这意味着先进的组织预先为学习者提供了对学习过程的完整洞察。第二,集中呈现的学习模式被发现在观察性学习中最有效。学习模型很可能显示出从学习模型根本不能执行任何任务的初始学习阶段到学习模型成为执行任务的专家的最后阶段的进展。因此,学习模式的使用可能提供了有关解决问题的过程的信息,并增强了学习者的动机,因为随着练习的进行,学习模式和学习者的表现都逐渐提高。因此,这些关于学习策略的研究结果表明,协调学习比参数学习更需要学习者对辅助运动学习的认知因素的参与,尽管协调学习中使用的任务在很大程度上受到内在吸引子的影响。较少
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
塚本茂博ら: "新しい協応動作習得のためのストラテジー" 体育学研究. 44・3(印刷中). (1999)
Shigehiro Tsukamoto 等人:“学习合作运动的新策略”《体育研究》44, 3(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
塚本茂博ら: "新しい協応動作習得のためのストラテジー"体育学研究. 44.3. 274-284 (1999)
Shigehiro Tsukamoto 等人:“学习合作运动的新策略”体育研究 44.3(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
筒井清次郎: "Effective Learning Strategies and Schedule for Acquiring New Patterns of Bimanual Coordination"東京都立大学理学部博士論文. 1-118 (2000)
Seijiro Tsutsui:“获得双手协调新模式的有效学习策略和时间表”博士论文,东京都立大学理学院 1-118 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Seijiro Tsutsui: "Strategies for Acquiring a New Bimanual Coordination Pattern"Journal of Sport & Exercise Psychology. 22supple-ment. S114 (1999)
Seijiro Tsutsui:“获得新的双手协调模式的策略”体育杂志
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
塚本茂博: "新しい協応動作習得のためのストラテジー"体育学研究. 44・3. 274-284 (1999)
冢本茂宏:“学习合作运动的新策略”体育研究44・3(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUTSUI Seijiro其他文献
TSUTSUI Seijiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUTSUI Seijiro', 18)}}的其他基金
Promotion of physical cognition and self teaching ability by movement improvement
通过动作改善提升身体认知和自学能力
- 批准号:
18500476 - 财政年份:2006
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An interaction between movement change and mental transfiguration in motor skill learning
运动技能学习中运动变化与心理变形之间的相互作用
- 批准号:
14580027 - 财政年份:2002
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
- 批准号:
2905946 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Studentship
Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
- 批准号:
24K17353 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Personalized Learning Model for STEM Graduate Education
STEM 研究生教育的个性化学习模式
- 批准号:
2325599 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
A machine learning model to assess the presence and severity of knee osteoarthritis based on gait data features
基于步态数据特征评估膝骨关节炎的存在和严重程度的机器学习模型
- 批准号:
23K16611 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an experience-based end-of-life learning model for visiting caregivers to support EOL care at home
为探访护理人员开发基于体验的临终学习模型,以支持家庭生命终止护理
- 批准号:
23K10300 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Joint development of COIL, an output-specific medical English language learning model in a cross-reality space
联合开发跨现实空间中特定输出的医学英语学习模型 COIL
- 批准号:
23H00645 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and spectral analysis of an ensemble machine learning model using quantum chemical descriptors
使用量子化学描述符的集成机器学习模型的开发和光谱分析
- 批准号:
23K04678 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment Process of Diverse Rice Cultivation Calendars Applying Failure Experience Learning Model for Climate Resilient Crop Production
应用失败经验学习模型进行气候适应性作物生产的多种水稻种植日历的建立过程
- 批准号:
23K05463 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a deep learning model to predict diverse mitochondrial targeting signals in parasites
开发深度学习模型来预测寄生虫中不同的线粒体靶向信号
- 批准号:
23K16986 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An ensemble deep learning model for tumor bud detection and risk stratification in colorectal carcinoma.
用于结直肠癌肿瘤芽检测和风险分层的集成深度学习模型。
- 批准号:
10564824 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别: