A Personalized Learning Model for STEM Graduate Education

STEM 研究生教育的个性化学习模式

基本信息

  • 批准号:
    2325599
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Most U.S. graduate engineering programs traditionally follow a “one-size-fits-all” approach that focuses narrowly on research skills, is slow to incorporate industry trends, and defaults to training students for careers as university professors. Further, students are often assumed to start at the same knowledge level, thereby disregarding differences not only in academic preparation, but in students’ background, including socioeconomic, sociocultural, prior work experience, and professional development. Not accounting for these factors negatively affects inclusivity. This National Science Foundation Innovations of Graduate Education (IGE) award to the University of Pittsburgh will (1) break the traditional one-size-fits-all approach to graduate STEM education by creating and validating an approach focused on personalized learning, and (2) generate the knowledge required to broadly deploy this innovation within and outside the University of Pittsburgh. The approach will be piloted in Chemical Engineering, where the impact on both students and faculty will be rigorously assessed. The personalized approach directly addresses issues of inclusivity by removing barriers to participation by underrepresented minorities. The innovation of this project lies in the integration of its components into a department-wide model that can be translated to any STEM field, directly addressing a well-known challenge in the STEM community: diffusion of educational innovations. That is, it does not rely on the personalization of a single course or a particular focus on professional development. This project will advance scientific knowledge on the connection between personalized learning and student outcomes. This project will create and validate a personalized learning model (PLM) for graduate STEM education. It is guided by an overarching theory of change to quantify the impact on both students and faculty. Key components of the model include (1) establishing Instructional Goals for each student through learner profiles, strength finders, and individual development plans, (2) defining the Task Environment through one-credit, modular classes that provide flexibility and content customization, along with a set of co-curricular activities organized around industry, academia, and entrepreneurship, and (3) Scaffolding the Instruction to provide pedagogy that leads to independence and mastery in the students’ area of focus. Strategy (4), Assessment of Performance and Learning, enables tracking of the students’ progression towards their instructional goals, followed by guided (5) Reflection and Evaluation. Qualitative and quantitative methods, both formative and summative, will be employed, guided by internal experts in evaluation and assessment, by an Education Innovation Advisory board, and by an external evaluator. The first goal of the innovation is to create and deploy the PLM, and the second goal is to provide the knowledge base to deploy this innovation beyond chemical engineering to other STEM fields within and beyond the University of Pittsburgh. Roger’s Diffusion of Innovation will be used to create and implement “how to” workshops to disseminate findings within Pitt and beyond. Thus, a significant broader impact is the development of a new approach to graduate training that, once proven impactful, can be disseminated nationally across multiple STEM disciplines.The Innovations in Graduate Education (IGE) program is focused on research in graduate education. The goals of IGE are to pilot, test and validate innovative approaches to graduate education and to generate the knowledge required to move these approaches into the broader community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大多数美国研究生工程课程传统上遵循“一刀切”的方法,狭隘地关注研究技能,缓慢地融入行业趋势,并默认为培养学生成为大学教授。此外,学生往往被假定从相同的知识水平开始,从而忽视了不仅在学术准备方面的差异,而且在学生的背景,包括社会经济,社会文化,以前的工作经验和专业发展方面的差异。不考虑这些因素会对包容性产生负面影响。这个国家科学基金会研究生教育创新(IGE)奖给匹兹堡大学将(1)打破传统的一刀切的方法来研究生STEM教育,通过创建和验证一种专注于个性化学习的方法,和(2)生成所需的知识,在匹兹堡大学内外广泛部署这一创新。 该方法将在化学工程中进行试点,对学生和教师的影响将进行严格评估。 个性化的方法通过消除代表性不足的少数群体参与的障碍,直接解决了包容性问题。该项目的创新之处在于将其组成部分整合到整个部门的模型中,该模型可以转换为任何STEM领域,直接解决STEM社区中众所周知的挑战:教育创新的传播。也就是说,它不依赖于单一课程的个性化或对专业发展的特别关注。 该项目将推进个性化学习和学生成绩之间联系的科学知识。 该项目将为研究生STEM教育创建和验证个性化学习模型(PLM)。 它是由变化的总体理论指导,以量化对学生和教师的影响。该模型的关键组成部分包括:(1)通过学习者档案、优势发现者和个人发展计划为每个学生建立教学目标;(2)通过提供灵活性和内容定制的单学分模块化课程定义任务环境,沿着一系列围绕行业、学术界和创业精神组织的课外活动,以及(3)为教学提供支架,以提供教学法,从而使学生在重点领域获得独立和掌握。策略(4),评估的表现和学习,使跟踪学生的进展,实现他们的教学目标,其次是指导(5)反思和评估。将采用定性和定量方法,包括形成性和总结性方法,由内部评估专家、教育创新咨询委员会和外部评估人员指导。 创新的第一个目标是创建和部署PLM,第二个目标是提供知识基础,将化学工程以外的创新部署到匹兹堡大学内外的其他STEM领域。罗杰的创新传播将用于创建和实施“如何”研讨会,以传播皮特内外的发现。因此,一个显著的更广泛的影响是研究生培养的新方法的发展,一旦证明有影响力,可以在全国范围内传播到多个STEM学科。研究生教育创新(IGE)计划专注于研究生教育的研究。IGE的目标是试验、测试和验证研究生教育的创新方法,并产生将这些方法推广到更广泛的社区所需的知识。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Fullerton其他文献

Susan Fullerton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Fullerton', 18)}}的其他基金

Field-Controlled Ion-Locked Polymorphic Electronics for Hardware Security
用于硬件安全的场控离子锁定多态电子器件
  • 批准号:
    2132006
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Scaling Electrolytes to a Single Monolayer for Low-Power Ion-Gated Electronics with Unconventional Characteristics
职业:将电解质缩放为单层,用于具有非常规特性的低功耗离子门控电子产品
  • 批准号:
    1847808
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
A New Approach to Explore the Semiconductor-to-Metal Phase Transition in Two-Dimensional Crystals Using Ionomers
使用离聚物探索二维晶体中半导体到金属相变的新方法
  • 批准号:
    1607935
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
GOALI: A low-voltage nonvolatile single transistor flash memory device based on ion transport in 2D electrolytes
GOALI:基于二维电解质中离子传输的低压非易失性单晶体管闪存器件
  • 批准号:
    1631717
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
GOALI: A low-voltage nonvolatile single transistor flash memory device based on ion transport in 2D electrolytes
GOALI:基于二维电解质中离子传输的低压非易失性单晶体管闪存器件
  • 批准号:
    1408425
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
  • 批准号:
    2905946
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Bayesian Learning with Model Misspecification
模型错误指定的贝叶斯学习
  • 批准号:
    23K20143
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Universal Model Selection Criteria for Scientific Machine Learning
科学机器学习的通用模型选择标准
  • 批准号:
    DE240100144
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
  • 批准号:
    24K17353
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
  • 批准号:
    2337943
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Sonar Foundational Model for Representation Learning and Automatic Target Recognition Systems in Underwater Maritime Environment
水下海洋环境中表示学习和自动目标识别系统的声纳基础模型
  • 批准号:
    2903803
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Designing a Bridging Model Using Learning Content Information LOD to Link School Education and Digital Archives
使用学习内容信息 LOD 设计桥接模型来链接学校教育和数字档案
  • 批准号:
    23H03695
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了