Numerical Analysis of Generalized Statistical Manifolds Associated with Stochastic Processes
与随机过程相关的广义统计流形的数值分析
基本信息
- 批准号:10680322
- 负责人:
- 金额:$ 0.64万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.A generalized statistical manifold is constructed for (time-) discrete stochastic processes characterized by n parameters 6=(θ_1・・・θ_n). According to information geometry, a metric tensor and an α-connection are introduced on an n-parameter family S_N={p(X, θ, N) θ∈Ω} of probability density functions p(X, θ, N) for a random variable X(N) at a discrete time N. As the discrete time goesby, a time series of statistical manifolds・・・, S_1, S_2, ・・・, S_N・・・ is generated, andgathering them leads to a stratified statistical manifold, which is the direct product space S×Z of a statistical manifold S and a set Z of integers. On the generalized statistical manifold an extended connection connecting two layers is introduced after the Newton-Cartan theory of Newton gravity and a theory in elementary particle physics in which Higgs fields are formulated as extended gauge fields. And then extended curvature tensors are constructed from the extended connection and the α-connection. Applying this new geometrical method to a random walk model, we find that its generalized statistical manifold has a duality structure.2.The physical role of the Riemann scalar curvature R of thermodynamic equilibrium systems is studied. Janyszek and Mrugala (JM) interpreted the tfas a measure of the instability of the systems.3.To examine wider roles of curvatures in physics, we also construct new models of thermodynamic systems or stochastic processes. Three germs are obtained, but geometrical characteristics in these models are left as future works.
1.构造了具有n个参数6=(θ_1···θ_n)的(时间)离散随机过程的广义统计流形。根据信息几何理论,在随机变量X(N)在离散时间N的概率密度函数p(X,α,N)的n参数族S_N={p(X,θ,N)θ∈Ω}上引入度量张量和θ-联络。随着离散时间的推移,产生统计流形的时间序列···,S_1,S_2,···,S_N···,将它们聚集在一起,得到一个分层的统计流形,它是统计流形S和一组整数的直积空间S×Z。在广义统计流形上,继牛顿-卡坦引力理论和基本粒子物理学中希格斯场被表示为扩展规范场之后,引入了连接两层的扩展连接。然后由扩展连接和α连接构造扩展曲率张量。将这种新的几何方法应用于一个随机游动模型,我们发现它的广义统计流形具有对偶结构。2.研究了热力学平衡系统的黎曼标量曲率R的物理作用。Janyszek和Mrugala(JM)将TFA解释为系统不稳定性的度量。3.为了考察曲率在物理学中的更广泛作用,我们还构建了热力学系统或随机过程的新模型。得到了三个胚芽,但这些模型中的几何特征有待于下一步的工作。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tsunehiro Obata: "Duality in Generalized Statistical Manifolds"Journal of the Korean Physical Society. 38. 475-479 (2000)
Tsunehiro Obata:“广义统计流形中的对偶性”韩国物理学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shigeji Fujita: "Theory of the Magnetic Susceptibility in La_<2-X>Sr_XCuO_4"Physical Review B. 63. 054402(6) (2001)
Shigeji Fujita:“La_<2-X>Sr_XCuO_4 中的磁化率理论”物理评论 B. 63. 054402(6) (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi Oshima: "Riemann scalar curvature of ideal quantum gases obeying Gentile' s statistics"J. Phys. A : Math. Gen. 32. 6373-6383 (1999)
大岛浩:“理想量子气体的黎曼标量曲率服从 Gentile 统计”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tsunehiro OBATA: "Differential Geometry of Discrete Stochatic Processes" Journal of the Korean Physical Society. 32・6. 773-785 (1998)
Tsunehiro OBATA:“离散随机过程的微分几何”,韩国物理学会杂志 32・6(1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
原 啓明: "複雑な粘弾性物質のモデル化と逆問題:Riemann-Liouviloe積分表示" 統計数理. 46・2. 477-491 (1998)
Hiroaki Hara:“复杂粘弹性材料的建模和反问题:Riemann-Liouviloe 积分表示” 统计数学 46・2(1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OBATA Tuhiriro其他文献
OBATA Tuhiriro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Coarse graining methods in nonequilibrium thermodynamics: Systematization and exploration using information geometry
非平衡热力学中的粗粒化方法:利用信息几何的系统化和探索
- 批准号:
23KJ0732 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Improving Information Geometry of Markov Chains for Data-Science
改进数据科学马尔可夫链的信息几何
- 批准号:
23K13024 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Bayesian Prediction Theory and Information Geometry for Non-regular and Quantum Statistical Models
非正则和量子统计模型的贝叶斯预测理论和信息几何
- 批准号:
23K11006 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational Information Geometry/Neuroinformatics
计算信息几何/神经信息学
- 批准号:
RGPIN-2020-04015 - 财政年份:2022
- 资助金额:
$ 0.64万 - 项目类别:
Discovery Grants Program - Individual
Portfolio theory, optimal transport and information geometry
投资组合理论、最优传输和信息几何
- 批准号:
RGPIN-2019-04419 - 财政年份:2022
- 资助金额:
$ 0.64万 - 项目类别:
Discovery Grants Program - Individual
Analysis of transfer learning based on information geometry
基于信息几何的迁移学习分析
- 批准号:
22H03653 - 财政年份:2022
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Portfolio theory, optimal transport and information geometry
投资组合理论、最优传输和信息几何
- 批准号:
RGPIN-2019-04419 - 财政年份:2021
- 资助金额:
$ 0.64万 - 项目类别:
Discovery Grants Program - Individual
Advances in optimal design of nonlinear experiments based on quantum information geometry
基于量子信息几何的非线性实验优化设计研究进展
- 批准号:
21K11749 - 财政年份:2021
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational Information Geometry/Neuroinformatics
计算信息几何/神经信息学
- 批准号:
RGPIN-2020-04015 - 财政年份:2021
- 资助金额:
$ 0.64万 - 项目类别:
Discovery Grants Program - Individual
Theoretical research for strongly correlated quantum systems in terms of topology and information geometry
强相关量子系统的拓扑和信息几何理论研究
- 批准号:
20K03769 - 财政年份:2020
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)