Studies on hardware algorithms for high-performance arithmetic circuits

高性能运算电路的硬件算法研究

基本信息

  • 批准号:
    10680349
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

1. We have developed a hardware algorithm for computing the Euclidean norm of a 3D vector which often appears in 3D computer graphics, and designed and implemented an LSI based on it.2. We have developed a hardware algorithm for cube rooting which appears in computer graphics, and designed and implemented an LSI based on it.3. We have developed a hardware algorithm for generating powers of an operand, such as recirocal, square root, reciprocal square root, reciprocal square, and so on, using a multiplier with operand modifier.4. We have developed a hardware algorithm for addition under the assumption of left-to-righ input arrival, which is optimal in theory and very efficient in practice.5. We have developed a hardware algorithms for modular division with very large modulus which is required in cryptosystems. It is based on the binay GCD algorithm.6. We have developed a hardware algorithms for division in GF (2^m) which is required in coding and cryptosystems, and designed and implemented an LSI based on it. We have also developed a fast algorithms for multiplicative inversion in GF (2^m) based Fermar's theorem.7. We have developed a fast addition algorithm on an elliptic curve over GF (2^n) using the projective coordinates which is required in public-key cryptosystems.8. We have shown that the VLSI layout problem of a bit slice of an adder tree can be treated as the minimum cut linear arrangement problem of its corresponding p-q dag, and proposed two algorithms for minimum cut linear arrangement of p-q dags.
1. 针对三维计算机图形学中经常出现的三维矢量欧几里得范数问题,提出了一种计算三维矢量欧几里得范数的硬件算法,并在此基础上设计并实现了一个大规模集成电路。我们开发了一种出现在计算机图形学中的立方体生根的硬件算法,并在此基础上设计并实现了一个大规模集成电路。我们开发了一种硬件算法,用于使用带操作数修饰符的乘法器生成操作数的幂,如倒数、平方根、倒数平方根、倒数平方等。我们开发了一种假设从左到右输入到达的加法硬件算法,该算法在理论上是最优的,在实践中是非常有效的。我们开发了一种用于密码系统中具有很大模量的模除法的硬件算法。它基于二进制GCD算法。我们开发了编码和密码系统中需要的GF (2^m)除法的硬件算法,并在此基础上设计和实现了一个大规模集成电路。我们还开发了一种基于Fermar定理的GF (2^m)乘法反演的快速算法。我们在GF (2^n)上的椭圆曲线上,利用公钥密码系统中需要的射影坐标,开发了一种快速加法算法。我们证明了加法树位片的VLSI布局问题可视为其对应的p-q段的最小切割线性排列问题,并提出了两种p-q段的最小切割线性排列算法。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Naofumi Takagi and Kazuyoshi Takagi: "A Fast Algorithm for Multiplicative Inversion in GF (2^m) Using Normal Basis"IEEE Trans.Computers. Vol.50(to appear). (2001)
Naofumi Takagi 和 Kazuyoshi Takagi:“使用正态基础的 GF (2^m) 乘法反演的快速算法”IEEE Trans.Computers。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Naofumi Takagi: "Powering by a table look-up and a multiplication with cperand modification" IEEE Transactions on Computers. 47・11. 1216-1222 (1998)
Naofumi Takagi:“通过表查找和乘法与 cperand 修改来实现”IEEE Transactions on Computers 47・11 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Higuchi N.Takagi: "A fast addition algorithm for elliptic curve arithmetic in GF(2^n)using projective coordinates"Information Processing Letters. 76. 101-103 (2000)
A.Higuchi N.Takagi:“使用射影坐标的 GF(2^n) 中椭圆曲线算术的快速加法算法”信息处理快报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Naofumi Takagi: "Digit-recurrence algorithm for computing Euclidcan norm of a 3-D vector" Proceedings of 14th Symosium on Computer Arithmetic. (1999)
Naofumi Takagi:“用于计算 3-D 向量的欧几里得范数的数字递归算法”第 14 届计算机算术研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
高木直史: "3次元ベクトルのユークリッドノルム計算のハードウェアアルゴリズム"電子情報通信学会 技術研究報告. VLD99-86. 87-94 (1999)
Naofumi Takagi:“三维向量欧几里得范数计算的硬件算法”IEICE 技术研究报告VLD99-86(1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAGI Naofumi其他文献

TAKAGI Naofumi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAGI Naofumi', 18)}}的其他基金

Research on high-performance and highly-dependable floating-point arithmetic unit arrays by contriving data representation
基于数据表示设计的高性能高可靠浮点运算单元阵列研究
  • 批准号:
    24300019
  • 财政年份:
    2012
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on synthesis of easily-testable arithmetic circuits
易测试运算电路的综合研究
  • 批准号:
    20300016
  • 财政年份:
    2008
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Researches on hardware algorithms for arithmetic operations in finite fields.
研究有限域算术运算的硬件算法。
  • 批准号:
    14380142
  • 财政年份:
    2002
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on combined arithmetic circuits for high-speed digital signal processing
高速数字信号处理组合运算电路的研究
  • 批准号:
    08680358
  • 财政年份:
    1996
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
  • 批准号:
    2332534
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Research of an efficient hardware algorithm for arbitary precision arithmetic
一种高效任意精度运算硬件算法的研究
  • 批准号:
    17K17630
  • 财政年份:
    2017
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了