Lower Bounds in Computer Science
计算机科学的下限
基本信息
- 批准号:10680342
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We focus our attention on finding lower bounds of the number M(m,n) of comparators in (m,n)-merging networks. M(n,n), (n < 5,n = 7,8,9) and 16 < oM(6,6) < 17 are already known. We proved that M(6,6) = 17. (The paper is published.)We derived a lower bound theorem concerning M(m,n), and showed that infinite-many Batcher's odd-even merge are optimal. By the theorem, we solved an open problem posed by Yao and Yao, which has been open for a quarter century. (The paper is published.)Consider Tsume-Shogi on n x n Shogi-board. We proved that the problem to determine whether the attack-side player (the first player) can give checkmate the game is EXPTIME complete. (The paper is published.)For a directed acyclic graph G with n nodes, T(G) is defined to be the number of the ways to assign integers 1,2, …, n to the nodes of G so that the number on node u is less than the one on v for an edge (u,v) in G. According to the definition, T(G] can be computed in O(n^2・n^!) steps. We presented an algorithm to compute T(G) in O(n^2 2^n) steps. (The paper is published in IEICE Technical Report.)As far as other researchers are concerned, Dr. Kasai showed a polynomial time inference algorithm, and a result in formal language. Dr. Takenaga gave some properties on ordered binary decision diagrams, and on tree-shellable boolean functions. Dr. Hasunuma showed properties on graph theory, and gave some graph algorithms. These results are considered as basic studies for our research project, and we will further develop these theories in our future research.
我们把注意力集中在寻找(m,n)-合并网络中比较器个数M(m,n)的下界上。M(n,n),(n < 5,n = 7,8,9)和16 < oM(6,6)< 17是已知的。我们证明了M(6,6)= 17。(The论文发表)。我们导出了关于M(m,n)的一个下界定理,并证明了无限多个Batcher的奇偶归并是最优的。利用这个定理,我们解决了姚和姚提出的一个公开问题,这个问题已经公开了四分之一世纪。(The论文发表)。考虑在n × n将棋棋盘上的常将棋。我们证明了确定攻击方玩家(第一个玩家)是否可以将死游戏的问题是EXPTIME完成的。(The论文发表)。对于n个结点的有向无圈图G,T(G)被定义为G中任意一条边(u,v)的整数1,2,.,n分配给G中结点的方式的个数,使得结点u上的个数小于v上的个数.在O(n^2·n^!)的情况下,算法的时间复杂度是O(n^2·n^!步我们给出了一个计算T(G)的算法,时间复杂度为O(n^22^n). (The论文发表在IEICE技术报告中。就其他研究人员而言,加塞博士展示了一个多项式时间推理算法,并以形式语言给出了一个结果。Takenaga博士给出了有序二元决策图和可树壳布尔函数的一些性质。莲沼博士展示了图论的性质,并给出了一些图形算法。这些结果被认为是我们研究项目的基础研究,我们将在未来的研究中进一步发展这些理论。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toru Hasunuma: "On edge-disjoint spanning trees with small depths"Inform. Processing Letters. 75. 71-74 (2000)
Toru Hasunuma:“在深度较小的边缘不相交的生成树上”告知。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toru Hasunuma: "The page number of de Bruijn and Kautz digraphs"電子情報通信学会技術研究報告. COMP98-48. 81-88 (1998)
Toru Hasunuma:“de Bruijn 和 Kautz 有向图的页码”IEICE COMP98-48 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toru Hasunuma and Hiroshi Nagamochi: "Independent spanning trees with small depths in iterated line digraphs"Disc. Appl. Math.. 110. 189-211 (2001)
Toru Hasunuma 和 Hiroshi Nagamochi:“迭代线有向图中深度较小的独立生成树”光盘。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Koichi Yamazaki, Hibiki Mizuno, Kazuhisa Masuda and Shigeki Iwata: "Minimum number of comparators in (6,6)-merging network"IEICE Trans. Inf. * Syst.. E83-D. 137-141 (2000)
Koichi Yamazaki、Hibiki Mizuno、Kazuhisa Masuda 和 Shigeki Iwata:“(6,6) 合并网络中比较器的最小数量”IEICE Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masaya Yokota, Tatsuie Tsukiji, Tomohiro Kitagawa, Gembu Morohashi, and Shigeki Iwata: "Exptime-completeness of generalized Tsume-Shogi"Trans. of IEICE D-I. J84-D-I. 239-246 (2001)
Masaya Yokota、Tatsuie Tsukiji、Tomohiro Kitakawa、Gembu Morohashi 和 Shigeki Iwata:“广义 Tsume-Shogi 的 Exptime 完整性”Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IWATA Shigeki其他文献
IWATA Shigeki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IWATA Shigeki', 18)}}的其他基金
Game informatics: Search of And-Or tree and Computational Complexity of games and puzzles
游戏信息学:与或树的搜索以及游戏和谜题的计算复杂性
- 批准号:
23500037 - 财政年份:2011
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computer Computation to obtain Lower Bounds of Computational Complexity
计算机计算以获得计算复杂性的下限
- 批准号:
07680345 - 财政年份:1995
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
High-frequency Estimation of Term Structure Models at the Zero Lower Bound
零下界期限结构模型的高频估计
- 批准号:
DP220100321 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Projects
Collaborative Research: AF:Medium: Advancing the Lower Bound Frontier
合作研究:AF:中:推进下界前沿
- 批准号:
2212135 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Collaborative Research: AF:Medium: Advancing the Lower Bound Frontier
合作研究:AF:中:推进下界前沿
- 批准号:
2212136 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
A study on international monetary policy coordination under the zero lower bound on nominal interest rates: The role of downward nominal wage rigidities
名义利率零下限下的国际货币政策协调研究:名义工资刚性下行的作用
- 批准号:
20K01784 - 财政年份:2020
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimating nonlinear behavioral macroeconomic models with the zero lower bound of nominal interest rates
名义利率零下限的非线性行为宏观经济模型的估计
- 批准号:
19H01491 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Empirical Investigation of Macroeconomic Effects of Economic Policy under Zero Lower Bound
零下限下经济政策宏观经济效应的实证研究
- 批准号:
19K13652 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Kahler Manifolds with Curvature Lower Bound
具有曲率下界的卡勒流形
- 批准号:
1709894 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Zero lower bound of nominal interest rate, credit market imperfections, and macroeconomic policy
名义利率零下限、信贷市场不完善和宏观经济政策
- 批准号:
15H05389 - 财政年份:2015
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Interest Rate Modeling at the Zero Lower Bound: Applications of Diffusions with Sticky Boundaries
零下限的利率建模:粘性边界扩散的应用
- 批准号:
1514698 - 财政年份:2015
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Collaborative Research: Monetary DSGE Models at the Zero Lower Bound: Policy Analysis and Econometric Inference
合作研究:零下限的货币 DSGE 模型:政策分析和计量经济学推理
- 批准号:
1425740 - 财政年份:2014
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant














{{item.name}}会员




