Interest Rate Modeling at the Zero Lower Bound: Applications of Diffusions with Sticky Boundaries

零下限的利率建模:粘性边界扩散的应用

基本信息

  • 批准号:
    1514698
  • 负责人:
  • 金额:
    $ 20.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Short-term interest rates in the U.S., the Euro zone, and Japan have been near zero since the global financial crisis of 2008, due to the monetary policy responses by the central banks to the financial crisis and the recession that followed. Conventional mathematical models of interest rates break down when the short term interest rate is at the zero lower bound (ZLB). This project develops and investigates a novel class of mathematical models of interest rates with the zero lower bound based on the mathematics of diffusion processes with sticky boundaries. The anticipated impact of the project is in applications in the financial industry to the pricing and hedging of interest-rate-sensitive financial instruments, to managing interest rate risk, to fixed income portfolio construction, and in central banking to aid in conducting monetary policy, as well as in training of doctoral students in financial mathematics and engineering. The class of diffusions with sticky boundaries is well suited to the challenge of modeling the ZLB, as it naturally supplies a model with two distinct economic regimes -- the process away from the boundary and the process on the boundary. This project develops analytical and computational tools to work with diffusions with sticky boundaries, including computational methods specifically tailored for this class of stochastic processes, and applies them to develop and empirically test interest rate models. The intellectual merit of this project is in the development of a novel class of interest rate models based on diffusions with sticky boundaries, and in the associated analytical and computational methods to solve stochastic differential equations with sticky boundaries and partial differential equations with Wentzell boundary conditions. Graduate students are included in the project.
美国的短期利率,自2008年全球金融危机以来,由于中央银行对金融危机和随之而来的经济衰退的货币政策反应,欧元区和日本的经济增长率一直接近于零。 当短期利率处于零下限时,传统的利率数学模型失效。 本计画以粘性边界扩散过程数学为基础,发展并研究一类新的零下限利率数学模型。 该项目的预期影响是在金融行业的应用,利率敏感的金融工具的定价和对冲,管理利率风险,固定收入投资组合的建设,并在中央银行协助执行货币政策,以及在金融数学和工程博士生的培训。 具有粘性边界的扩散类非常适合对ZLB建模的挑战,因为它自然地提供了具有两种不同经济制度的模型-远离边界的过程和边界上的过程。 该项目开发了分析和计算工具,用于处理具有粘性边界的扩散,包括专门为这类随机过程量身定制的计算方法,并将其应用于开发和实证测试利率模型。 这个项目的智力价值是在一类新的利率模型的基础上,粘性边界扩散的发展,并在相关的分析和计算方法来解决随机微分方程粘性边界和偏微分方程与Wentzell边界条件。 研究生也包括在该项目中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vadim Linetsky其他文献

Long-term factorization in Heath–Jarrow–Morton models
  • DOI:
    10.1007/s00780-018-0365-7
  • 发表时间:
    2018-05-18
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Likuan Qin;Vadim Linetsky
  • 通讯作者:
    Vadim Linetsky
TIME‐CHANGED MARKOV PROCESSES IN UNIFIED CREDIT‐EQUITY MODELING
统一信用-股权建模中的时变马尔可夫过程
  • DOI:
    10.1111/j.1467-9965.2010.00411.x
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Rafael Mendoza;Peter Carr;Vadim Linetsky
  • 通讯作者:
    Vadim Linetsky
Partially egalitarian portfolio selection
  • DOI:
    10.1016/j.orl.2023.11.008
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yiming Peng;Vadim Linetsky
  • 通讯作者:
    Vadim Linetsky

Vadim Linetsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vadim Linetsky', 18)}}的其他基金

Asset Allocation: A Statistical Learning Approach
资产配置:一种统计学习方法
  • 批准号:
    1916616
  • 财政年份:
    2019
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Market Expectations, Long Term Risk, and Stochastic Spectral Theory
市场预期、长期风险和随机谱理论
  • 批准号:
    1536503
  • 财政年份:
    2015
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Spectral Methods for Optimal Stopping and First Passage Problems with Applications in Financial Mathematics
最优停止和首次通过问题的谱方法及其在金融数学中的应用
  • 批准号:
    1109506
  • 财政年份:
    2011
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Multivariate Dynamic Stochastic Models of Credit Risk
信用风险的多元动态随机模型
  • 批准号:
    1030486
  • 财政年份:
    2010
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Time Changes of Markov Processes: Applications in Financial Mathematics
马尔可夫过程的时间变化:在金融数学中的应用
  • 批准号:
    0802720
  • 财政年份:
    2008
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Continuing Grant
GOALI: Modeling and Managing Customer Default Risk in a Manufacturing Enterprise
目标:对制造企业中的客户违约风险进行建模和管理
  • 批准号:
    0654043
  • 财政年份:
    2007
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
  • 批准号:
    0422937
  • 财政年份:
    2004
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Performance Computational Methods for Continuous-Time Markov Processes in Financial Engineering
合作研究:金融工程中连续时间马尔可夫过程的高性能计算方法
  • 批准号:
    0223354
  • 财政年份:
    2002
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Research and Education in Financial Engineering
金融工程研究与教育
  • 批准号:
    0200429
  • 财政年份:
    2002
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于chirp-rate调制的混合扩频理论与方法研究
  • 批准号:
    60902054
  • 批准年份:
    2009
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modeling of soft materials subjected to high strain rate deformation
高应变率变形软材料的建模
  • 批准号:
    580284-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Alliance Grants
Modeling of nitrous oxide emission based on quantification of its production and consumption rate based on soil incubation under low soil oxygen concentration conditions
基于低土壤氧浓度条件下土壤培育的一氧化二氮排放量建模,量化其产生和消耗率
  • 批准号:
    21K05883
  • 财政年份:
    2021
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSFGEO-NERC:A new mechanistic framework for modeling rift processes in Antarctic ice shelves validated through improved strain-rate and seismic obser
NSFGEO-NERC:通过改进的应变率和地震观测器验证南极冰架裂谷过程的新机制框架
  • 批准号:
    NE/V013319/1
  • 财政年份:
    2021
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Research Grant
A numerical method for stochastic differential equations for interest rate modeling and regulation after the global financial crises of 2007-2008
2007-2008 年全球金融危机后利率建模和监管的随机微分方程数值方法
  • 批准号:
    21K03365
  • 财政年份:
    2021
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSFGEO-NERC:Collaborative Research: A New Mechanistic Framework for Modeling Rift Processes in Antarctic Ice Shelves Validated through Improved Strain-rate and Seismic Observations
NSFGEO-NERC:合作研究:通过改进的应变率和地震观测验证南极冰架裂谷过程建模的新机制框架
  • 批准号:
    2127313
  • 财政年份:
    2021
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
The impact of Monte Carlo dose calculations on prostate and breast low-dose rate brachytherapy dose-outcome relationships and radiobiological modeling.
蒙特卡罗剂量计算对前列腺和乳房低剂量率近距离放射治疗剂量结果关系和放射生物学模型的影响。
  • 批准号:
    419923
  • 财政年份:
    2020
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Operating Grants
NSFGEO-NERC:Collaborative Research: A New Mechanistic Framework for Modeling Rift Processes in Antarctic Ice Shelves Validated through Improved Strain-rate and Seismic Observations
NSFGEO-NERC:合作研究:通过改进的应变率和地震观测验证南极冰架裂谷过程建模的新机制框架
  • 批准号:
    1853918
  • 财政年份:
    2020
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Elucidation and modeling flow rate dependence on photosynthetic and calcification rates of hermatypic corals
造血珊瑚光合作用和钙化速率对流量依赖性的阐明和建模
  • 批准号:
    20K12134
  • 财政年份:
    2020
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSFGEO-NERC:Collaborative Research: A New Mechanistic Framework for Modeling Rift Processes in Antarctic Ice Shelves Validated through Improved Strain-rate and Seismic Observations
NSFGEO-NERC:合作研究:通过改进的应变率和地震观测验证南极冰架裂谷过程建模的新机制框架
  • 批准号:
    1853896
  • 财政年份:
    2020
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Environmental factors determining nitrogen removal rate in rice paddy and their modeling
影响稻田氮去除率的环境因素及其模型
  • 批准号:
    19K06332
  • 财政年份:
    2019
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了