Combinatorial Representation Theory of Affine Lie Alqebras and Symmetric Groups
仿射李代数与对称群的组合表示论
基本信息
- 批准号:11640001
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My first attempt was to describe the weight basis of the basic representations of several typical affine Lie algebras. In particular, for the simplest affine Lie algebra A^<(1)>_1, I considered two realizations of the basic representation and found that the modular version of the Schur functions and Schur's Q-functions occur as weight basis, respectively. Analysing these two realizations, I found an interesting phenomenon for the elementary divisors of the spin decomposition matrices for the symmetric group. Namely the elemntary divisors of the spin decomposition matrices for prime 2 are all powers of 2. Though this fact actually can be proved by a general theory of modular representations, I could give a simple proof of this by utilizing representations of the affine Lie algebra A^<(1)>_1.Studying the zonal polynomials, which are a specialization of the Jack polynomials, I found an interesting fact in the character tables of the symmetric group. Later I recognizes that this fact had been found more than 50 years ago by Littlewood, whose proof is a bit complicated. I gave a simple proof of this fact as well as its spin version with Hiroshi Mizukawa, a graduate student. The main tools for the proof are again Schur functions and Schur's Q-functions.In the joint work with Takeshi Ikeda I could obtain all the homogeneous polynomial solutions for the nonlinear Schrodinger hierarchy. The schur functions indexed by the rectangular Young diagrams play an essential role in this theory.
我的第一个尝试是描述几个典型的仿射李代数的基本表示的重量基础。特别是,对于最简单的仿射李代数A^<(1)>_1,我考虑了基本表示的两种实现,并发现舒尔函数和舒尔Q函数的模版本分别作为权基出现。通过分析这两种实现,发现了对称群的自旋分解矩阵的初等因子的一个有趣现象。即素数为2的自旋分解矩阵的元素因子都是2的幂。虽然这一事实实际上可以用模表示的一般理论来证明,但我可以利用仿射李代数A^<(1)>_1的表示来给出一个简单的证明。在研究Jack多项式的特殊化的带状多项式时,我发现了对称群的特征标表中一个有趣的事实。后来我认识到,这个事实已经发现了50多年前由利特尔伍德,其证明是有点复杂。我和研究生水川浩(Hiroshi Mizukawa)一起给出了这个事实的一个简单证明及其旋转版本。主要工具的证明再次舒尔职能和舒尔的Q-functions.In联合工作与池田武我可以获得所有的齐次多项式解决方案的非线性薛定谔层次。在这一理论中,由矩形Young图表示的Schur函数起着至关重要的作用。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
山田裕史: "Schur functions and two realizations of the basic A^<(1)>_1-module"Proc.Int'l Workshop on Special Functions. 431-438 (2000)
Hiroshi Yamada:“Schur 函数和基本 A^<(1)>_1-module 的两种实现”Proc.Intl 特殊函数研讨会 431-438 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tatsuhiro Nakajuna and Hiro-Fumi Yamada: "Sclur's Q-functions and twisted affine Lie algebras"Advanced Studies in Pare Mathematics. 28. 241-259 (2000)
Tatsuhiro Nakajuna 和 Hiro-Fumi Yamada:“Sclur 的 Q 函数和扭曲仿射李代数”Pare 数学高级研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
YAMADA, Hiro-Fumi: "Reduced Schur Functions and Littlewood-Richardson coeffcients"Journal of London Mathematical Society. (2)59. 396-406 (1999)
YAMADA,Hiro-Fumi:“约简 Schur 函数和 Littlewood-Richardson 系数”伦敦数学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMADA Hiro-fumi其他文献
YAMADA Hiro-fumi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMADA Hiro-fumi', 18)}}的其他基金
Combinatorics and Representation Theory of Nonlinear Differential Equations
非线性微分方程的组合学和表示论
- 批准号:
17540026 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Tensor and wreath products of symmetric groups
对称群的张量和花环积
- 批准号:
EP/V00090X/1 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Fellowship
Study of special blocks of spin symmetric groups for irreducible representations and derived equivalences
研究不可约表示和导出等价的自旋对称群的特殊块
- 批准号:
20K03506 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representations of symmetric groups, wreath products of symmetric groups and related diagram algebras
对称群的表示、对称群的花圈积及相关图代数
- 批准号:
2289820 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Studentship
Representation Theory of the Partition Algebras and Symmetric Groups
配分代数和对称群的表示论
- 批准号:
2117788 - 财政年份:2018
- 资助金额:
$ 2.3万 - 项目类别:
Studentship
Exponents for representations of the symmetric groups and modular forms
对称群和模形式表示的指数
- 批准号:
527759-2018 - 财政年份:2018
- 资助金额:
$ 2.3万 - 项目类别:
University Undergraduate Student Research Awards
From spin representations of the symmetric groups to Hirota equations
从对称群的自旋表示到 Hirota 方程
- 批准号:
17K05180 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Determining values of the decomposition matrix of the symmetric groups
确定对称群分解矩阵的值
- 批准号:
495485-2016 - 财政年份:2016
- 资助金额:
$ 2.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Modular representations of symmetric groups
对称群的模表示
- 批准号:
483007-2015 - 财政年份:2015
- 资助金额:
$ 2.3万 - 项目类别:
University Undergraduate Student Research Awards
Topology of Hessenberg varieties and representations of symmetric groups
Hessenberg簇的拓扑和对称群的表示
- 批准号:
15K17544 - 财政年份:2015
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Graded representations of symmetric groups and related algebras
对称群及相关代数的分级表示
- 批准号:
EP/L027283/1 - 财政年份:2014
- 资助金额:
$ 2.3万 - 项目类别:
Research Grant