Graded representations of symmetric groups and related algebras

对称群及相关代数的分级表示

基本信息

  • 批准号:
    EP/L027283/1
  • 负责人:
  • 金额:
    $ 12.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Representation theory of symmetric groups is a very active branch of research with connections to physics, chemistry and many different topics across mathematics. In a sense, representation theory is the study of symmetry: whereas a group may be viewed as an abstract set of symmetries, a representation of that group is a way of realising those symmetries through an action on a concrete object, namely, on a vector space (such as the 3-dimensional space we live in). Representations of symmetric groups have been investigated for more than a century: this has led to many strong results and, in particular, to beautiful combinatorial constructions. However, many problems remain unsolved in the study of modular representations of symmetric groups: in this context, we do not even know the dimensions of irreducible representations, which are the building blocks that can be used to construct all representations. A substantial part of the required information can be obtained through the study of representations of certain Iwahori-Hecke algebras, which is a more tractable problem. Representation theory of Iwahori-Hecke algebras is important in its own right, as it has many other applications.In the last 20 years, spectacular connections have emerged between modular representations of symmetric groups and the so-called ``quantum groups'', which were originally defined to study the Yang-Baxter equation in mathematical physics. These connections were made particularly precise 5 years ago, after the discovery of Khovanov-Lauda-Rouquier (KLR) algebras. It turns out that one can view representations of a symmetric group (or an Iwahori-Hecke algebra) as a representation of a KLR algebra. Moreover, this point of view reveals previously hidden exciting structural properties: in particular, the representations become graded. The aim of the project is to exploit this ground-breaking advance to the fullest possible extent. In the first part of the project, conjectures that concern certain blocks of symmetric groups and pre-date KLR algebras will be investigated from the new point of view provided by those algebras. The second part will be devoted to a study of simple modules of Iwahori-Hecke algebras through the lens of KLR algebras. The third part will be an investigation into invariants of graded Cartan matrices of symmetric groups. It is hoped that ideas will be transferred between quantum groups and representations of symmetric groups in both directions, in particular, that combinatorial constructions related to symmetric groups will influence the theory of quantum groups.
对称群的表示论是一个非常活跃的研究分支,与物理,化学和许多不同的数学主题有关。在某种意义上,表示论是对对称性的研究:一个群可以被看作是一组抽象的对称性,而这个群的表示是通过作用于一个具体对象,即向量空间(如我们生活的三维空间)来实现这些对称性的一种方式。对称群的表示已经研究了世纪:这导致了许多强有力的结果,特别是美丽的组合结构。然而,在对称群的模表示的研究中仍有许多问题未解决:在这种情况下,我们甚至不知道不可约表示的维数,这是可以用来构造所有表示的构建块。所需信息的相当一部分可以通过研究某些岩堀-赫克代数的表示来获得,这是一个更容易处理的问题。Iwahori-Hecke代数的表示理论本身就很重要,因为它有许多其他的应用。在过去的20年里,对称群的模表示和所谓的“量子群”之间出现了惊人的联系,量子群最初是为了研究数学物理中的杨-巴克斯特方程而定义的。这些联系是在5年前发现Khovanov-Lauda-Rouquier(KLR)代数之后特别精确的。事实证明,人们可以将对称群(或岩堀-赫克代数)的表示视为KLR代数的表示。此外,这种观点揭示了以前隐藏的令人兴奋的结构特性:特别是,表征变得分级。该项目的目的是最大限度地利用这一突破性进展。在项目的第一部分中,将从这些代数提供的新观点出发,研究涉及对称群和早于KLR代数的某些块的结构。第二部分通过KLR代数的透镜研究Iwahori-Hecke代数的单模。第三部分研究对称群分次Cartan矩阵的不变量。人们希望量子群和对称群的表示之间的思想能够双向转移,特别是与对称群相关的组合构造将影响量子群理论。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Blocks of symmetric groups, semicuspidal KLR algebras and zigzag Schur-Weyl duality
  • DOI:
    10.4007/annals.2018.188.2.2
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    A. Evseev;A. Kleshchev
  • 通讯作者:
    A. Evseev;A. Kleshchev
RoCK blocks, wreath products and KLR algebras
  • DOI:
    10.1007/s00208-016-1493-z
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    A. Evseev
  • 通讯作者:
    A. Evseev
ON BASES OF SOME SIMPLE MODULES OF SYMMETRIC GROUPS AND HECKE ALGEBRAS
  • DOI:
    10.1007/s00031-017-9444-7
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    M. de Boeck;A. Evseev;S. Lyle;L. Speyer
  • 通讯作者:
    M. de Boeck;A. Evseev;S. Lyle;L. Speyer
Turner doubles and generalized Schur algebras
特纳双打和广义舒尔代数
  • DOI:
    10.1016/j.aim.2017.07.012
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Evseev A
  • 通讯作者:
    Evseev A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anton Evseev其他文献

Reduction for characters of finite algebra groups
  • DOI:
    10.1016/j.jalgebra.2010.07.048
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anton Evseev
  • 通讯作者:
    Anton Evseev

Anton Evseev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anton Evseev', 18)}}的其他基金

Unipotent characters of finite groups
有限群的单能特征
  • 批准号:
    EP/G050244/2
  • 财政年份:
    2011
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Fellowship
Unipotent characters of finite groups
有限群的单能特征
  • 批准号:
    EP/G050244/1
  • 财政年份:
    2010
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Fellowship

相似海外基金

Combinatorics and Geometry of Symmetric Group Representations
对称群表示的组合学和几何
  • 批准号:
    2204415
  • 财政年份:
    2021
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Standard Grant
Analytic research on branching law of infinite-dimensional representations associated with symmetric R spaces
对称R空间无限维表示分支规律的解析研究
  • 批准号:
    20J00114
  • 财政年份:
    2020
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Study of special blocks of spin symmetric groups for irreducible representations and derived equivalences
研究不可约表示和导出等价的自旋对称群的特殊块
  • 批准号:
    20K03506
  • 财政年份:
    2020
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of relatively cuspidal representations attached to symmetric varieties over local fields
局部场上对称品种的相对尖峰表示的构建
  • 批准号:
    20K03559
  • 财政年份:
    2020
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of symmetric groups, wreath products of symmetric groups and related diagram algebras
对称群的表示、对称群的花圈积及相关图代数
  • 批准号:
    2289820
  • 财政年份:
    2019
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Studentship
Graded representations of the symmetric group
对称群的分级表示
  • 批准号:
    524580-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 12.54万
  • 项目类别:
    University Undergraduate Student Research Awards
Exponents for representations of the symmetric groups and modular forms
对称群和模形式表示的指数
  • 批准号:
    527759-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 12.54万
  • 项目类别:
    University Undergraduate Student Research Awards
From spin representations of the symmetric groups to Hirota equations
从对称群的自旋表示到 Hirota 方程
  • 批准号:
    17K05180
  • 财政年份:
    2017
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tilting complex and Perverse equivalence in Representation theory
表示论中的倾斜复数与反常等价
  • 批准号:
    17F17814
  • 财政年份:
    2017
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Irreducible tensor products of representations of symmetric and related groups
对称群和相关群表示的不可约张量积
  • 批准号:
    392927392
  • 财政年份:
    2017
  • 资助金额:
    $ 12.54万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了