Research on non-abelian Hodge structures of algebraic varieties
代数簇的非阿贝尔Hodge结构研究
基本信息
- 批准号:11640016
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There were the following three purposes for this project.1) Study of the non-abelian Hodge decomposition (or filtration) in the case of positive characteristic.2) Study of the relation between defomation theory of non-commutative schemes and non-abelian Hodge theory.3) Study of non-abelian mixed Hodge structures of algebraic varieties.As for the first purpose, I realized that it would be important to construct the crystellin homotopy theory using n-stacks. If such a theory is constructed, the original problem would be clear and there would be many applications. It would be an extention of the work of N. Katz on Frobenius maps and Hodge filtrations in the abelian cases. I am now trying this next big project. On the second one, after the study of non-abelian schemes I understood that it is more natural to describe the deformation parameter space as an n-stacks. Such description would be useful to study the relationship with non-abelian Hodge structures. On the third one, there was a great development by C. Simpson. He describe the non-abelian mixed Hodge structures as kinds of filtrations on non-abelian cohomology n-stacks. I studied his theory and make some explicit calculations of such filtrations on n-stacks. Moreover I worked with Y. Takeda on the pre-Tango structures on curves. The work is related on the first one. With K. Ohba, I studied on the relation between the study of gerbs (using n-stacks) and the study of cycles of moduli spaces.
本课题的主要目的有三个:1)研究非阿贝尔Hodge分解(或过滤)的性质. 2)研究非交换格式的变形理论与非交换Hodge理论之间的关系. 3)研究代数簇的非交换混合Hodge结构.至于第一个目的,我意识到用n-栈来构造crystellin同伦理论是很重要的。如果这样一个理论被建立起来,那么原来的问题就清楚了,而且会有许多应用。这将是N. Katz关于Frobenius映射和交换情形下的Hodge滤。我正在尝试下一个大项目。在第二个方面,在研究了非阿贝尔方案之后,我明白了将变形参数空间描述为n-堆叠是更自然的。这样的描述将有助于研究与非阿贝尔Hodge结构的关系。在第三个方面,C.辛普森他将非交换混合Hodge结构描述为非交换上同调n-栈上的各种过滤。我研究了他的理论,并对n-栈上的这种过滤进行了一些明确的计算。我和Y一起工作。武田在曲线上的前探戈结构。这项工作与第一项有关。与K. Ohba,我研究了gerbs(使用n-栈)的研究与模空间的循环的研究之间的关系。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kiyoshi Ohba: "Cutting and pasting of Riemann surfaces with Abelian Differentials"International Journal of Mathematics. 10. 587-617 (1999)
Kiyoshi Ohba:“用阿贝尔微分剪切和粘贴黎曼曲面”国际数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Koji Yokogawa: "Pre-Tango Structures on Curves"Tohoku Mathematical Journal. (to appear).
横河浩二:“曲线上的前探戈结构”东北数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
大場清: "Embedding of the moduli space of Riemann surfaces with Igeta structures into the Sato Grassmann manifold"Perspectives of Complex Analysis, Differential Geometry and Mathematical Physics. 75-78 (2001)
Kiyoshi Ohba:“将具有 Igeta 结构的黎曼曲面的模空间嵌入到佐藤格拉斯曼流形中”复分析、微分几何和数学物理的观点 75-78 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Koji Yokogawa: "Rationality of modeli of parabolic sheaves on curve"Journal of London Mathematical Society. 59. 461-478 (1999)
横河浩二:“曲线上抛物线滑轮模型的合理性”伦敦数学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
大場清: "Higher cycles on the moduli space of stable curves"Journal of Mathematical Society of Japan. 52. 231-267 (2000)
Kiyoshi Ohba:“稳定曲线模空间上的高循环”日本数学会杂志 52. 231-267 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOKOGAWA Koji其他文献
YOKOGAWA Koji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOKOGAWA Koji', 18)}}的其他基金
Non-abelian Hodge theory for positive characteristic and crystalline structures
正特征和晶体结构的非阿贝尔霍奇理论
- 批准号:
17540015 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Research on singularities on an algebraic variety
代数簇的奇点研究
- 批准号:
16K05089 - 财政年份:2016
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive research of Galois embedding of algebraic variety
代数簇的伽罗瓦嵌入综合研究
- 批准号:
15K04813 - 财政年份:2015
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Resolution of singularities of an algebraic variety over an algebraically closed field in positive characteristic
正特征代数闭域上代数簇奇点的解析
- 批准号:
23740016 - 财政年份:2011
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of canonical divisors on higher dimensional algebraic variety
高维代数簇的正则因数研究
- 批准号:
22244002 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Deformations of curves on a higher dimensional algebraic variety and their obstructions
高维代数簇上曲线的变形及其阻碍
- 批准号:
21740029 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Lie algebra of differential oeprators on algebraic variety and its representations
代数簇微分算子的李代数及其表示
- 批准号:
09640030 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimates For Integer Points on Algebraic Variety by using Diophantine Approxiwatic
使用丢番图近似估计代数簇上的整数点
- 批准号:
06640082 - 财政年份:1994
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Resolution of Singularities of an Algebraic Variety Over a Characteristic p Field
数学科学:特征 p 域上代数簇奇异性的解析
- 批准号:
8901892 - 财政年份:1989
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
Mathematical Sciences: Resolution of Singularities of an Algebraic Variety over a Field of Characteristic p.
数学科学:特征域上代数簇奇异性的解析 p。
- 批准号:
8700957 - 财政年份:1987
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
Real Algebraic Variety Structures on P.L. Manifolds
P.L. 上的实代数簇结构
- 批准号:
7701763 - 财政年份:1977
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant