Non-abelian Hodge theory for positive characteristic and crystalline structures
正特征和晶体结构的非阿贝尔霍奇理论
基本信息
- 批准号:17540015
- 负责人:
- 金额:$ 2.26万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to extend non-abelian Hodge theory to algebraic varieties for positive characteristic or arithmetic varieties. For this purpose I have been studying general theories for some construction of crystalline topos using higher category theory. It seems that higher topos theory is a suitable language to describe real crystalline topoi. Various higher category theories (even higher topos theories) have been constructed in these ten twenty years by many researchers (C. Simson, B. Then, J. Lurie). Until last year I used mainly Simpson's methods, but after reading recent work of J. Lurie I realized that it is suitable to use Lurie's higher topos theory for our constructions. This project will be important for arithmetic geometry and mathematical physics in the near future. On the other hand, to describe higher crystalline structure, it seems that formulations of the structure over the ring of ratioinal integers are not adequate. A recent work of N. Durov construes the field with one element F_1 which has been expected to exist. If higher crystalline topos theory could be constructed over the field F_1, it should be useful. A construction of such theory is the next theme for this project.
该项目的目的是将非交换霍奇理论扩展到代数簇的正特征或算术簇。为此,我一直在研究使用更高范畴论构建晶体拓扑的一般理论。看来高等拓扑结构理论是描述真实晶体拓扑结构的合适语言。在这十二十年里,许多研究者(C. Simson、B. then、J. Lurie)构建了各种更高范畴理论(甚至更高拓扑理论)。直到去年我主要使用辛普森的方法,但在阅读了 J. Lurie 最近的著作之后,我意识到使用 Lurie 的更高拓扑理论来进行构建是合适的。该项目对于不久的将来的算术几何和数学物理将具有重要意义。另一方面,为了描述更高的晶体结构,有理整数环上的结构公式似乎还不够。 N. Durov 最近的一项工作用一个预计存在的元素 F_1 解释了该场。如果可以在 F_1 场上构建更高结晶拓扑理论,它应该是有用的。构建这样的理论是该项目的下一个主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOKOGAWA Koji其他文献
YOKOGAWA Koji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOKOGAWA Koji', 18)}}的其他基金
Research on non-abelian Hodge structures of algebraic varieties
代数簇的非阿贝尔Hodge结构研究
- 批准号:
11640016 - 财政年份:1999
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
- 批准号:
2341204 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
- 批准号:
DP240101084 - 财政年份:2024
- 资助金额:
$ 2.26万 - 项目类别:
Discovery Projects