Global Research of Geometry related with Poisson and Contact Manifolds.
与泊松和接触流形相关的几何的全球研究。
基本信息
- 批准号:11640060
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the first year of the term of the project, we investigated Nambu-Jacobi manifolds and gave a characterization of such manifolds interms of multi-vector fields. This result is written in the preprint Foliations assocaited with Nambu-Jacobi structures which is a joint paper with K. Mikami(Akita University).In the second and the third year of the project, we were concerned with two topics. The one is the Leibniz algebra associated with a Nambu-Poisson manifold. We first observed that given a decomposable integrable p-form, the space of p+1-vector fields on the manifold have a structure of Leibniz algebra. Further we observed that this algebra structure depends only on the diffeomorphism class of the foliation defined by the p-form. Also, there is a natural Leibniz homomorphism from this algebra to the Lie algebra which is formed by the vector fields tangent to the foliation. As in the case of Lie algebras, this extension of algebra corresponds to a 2-dimensional cocycle of a Leibniz cohomology. These results are contained in the paper Y. Hagiwara-Tmizutani "Leibniz algebras associated with foliations" The other is study of the Pfaff system regarding it as a submanifold of the symplectic manifold T^*M. A. typical result of this direction is that the Pfaff system is completely integrable if it is a coisotropic submanifold of T^*M. From this vie point we described the Godbillon-Vey class as a intersection of certain naturally defined multi-vector fields.
在项目的第一年,我们研究了Nambu-Jacobi流形,并给出了这种流形在多向量场项下的表征。这一结果写在与K. Mikami(秋田大学)合著的预印本《Foliations associated with Nambu-Jacobi structures》中。在项目的第二年和第三年,我们关注了两个主题。一个是与南布泊松流形相关的莱布尼茨代数。我们首先观察到给定一个可分解可积的p型,流形上的p+1向量场空间具有莱布尼茨代数结构。进一步我们观察到这个代数结构只依赖于由p型定义的叶理的微分同构类。而且,从这个代数到李代数有一个自然的莱布尼茨同态,它是由与叶理相切的向量场形成的。在李代数的情况下,这个代数的扩展对应于一个莱布尼茨上同调的二维环。这些结果载于Y. Hagiwara-Tmizutani的论文“与叶相关的莱布尼兹代数”。另一个是将Pfaff系统作为辛流形T^*M的子流形的研究。a .这个方向的典型结果是,如果Pfaff系统是T^*M的各向同性子流形,则它是完全可积的。从这个观点出发,我们将哥德亿维类描述为某些自然定义的多向量场的交集。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T, Fukui and J. Weyman: "Cohen-Macaulay properties of Thom-Boardman strata I: Morin's ideal"to appear in Proceedings of London Mathematical Society.
T、Fukui 和 J. Weyman:“Thom-Boardman 层 I 的 Cohen-Macaulay 性质:Morin 的理想”出现在《伦敦数学会报》上。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Takeuchi: "Totally real algebraic number fields of degree 9"Saitama Mathematical Journal. 17. 63-85 (1999)
K. Takeuchi:“9次全实代数数域”埼玉数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Fukui and L. Paunescu: "Modified analytic trivialization for weighted homogeneous function-germs"to appear in Journal of the Mathematical Society of Japan. 52. 433-446 (2000)
T. Fukui 和 L. Paunescu:“加权齐次函数胚的改进分析平凡化”将发表在《日本数学会杂志》上。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masafumi Okumura: "CR submanifold of maximal CR dimension of complex projective space"Bulletin of the Greek Mathematical Society. 44. 31-39 (2000)
Masafumi Okumura:“复射影空间最大CR维数的CR子流形”希腊数学会通报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toshizumi Fukui : "Congruence for real curves in toric surface and Newton Polygons"Proceedings of XI Brazilian topology meetings (ed.by S.Firmo et al.). World Scientific. 148-167 (2000)
Toshizumi Fukui:“复曲面和牛顿多边形中的实曲线的同余”第十一届巴西拓扑会议记录(由 S.Firmo 等人编辑)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIZUTANI Tadayoshi其他文献
MIZUTANI Tadayoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIZUTANI Tadayoshi', 18)}}的其他基金
RESEARCH ON THE POISSON GEOMETRY AND THE RELATED GEOMETRIES
泊松几何及相关几何的研究
- 批准号:
19540065 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research On the Geometry Related with Structures of Manifolds and Plane Fields
与流形和平面场结构有关的几何研究
- 批准号:
15540060 - 财政年份:2003
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Poisson manifolds and related structures on manifolds.
泊松流形及流形上的相关结构研究。
- 批准号:
09640088 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)