Isometric immersions between spaces forms
空间形式之间的等距沉浸
基本信息
- 批准号:11640067
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hypersurfaces M^n with constant mean curvature in a Riemannian manifold M^^〜^<n+1> are solutions to the variational problem of minimizing the area function for certain variations ; the admissible variations are only those that leave a certain volume function fixed. This isoperimetric character of the variational problem associated to hypersurfaces with constant mean curvature introduces additional complications in the treatment of stability of such hypersurfaces.There are many complete hypersurfaces with constant mean curvature in Euclidean (n+1)-space R^<n+1> and Euclidean (n+1)-sphere S^<n+1>, but in the hyperbolic (n+1)-space H^<n+1> there have been few results on such hypersurfaces except umbilical ones. First main purpose of this paper is to construct one-parameter families of three distinct type, rotation hypersurfaces with constant mean curvature in H^<n+1>, explicitly.Barbosa, do Carmo and Eschenburg have defined the notion of stability for hypersurfaces M^n with constant mean curvature in a Riemannian manifold M^^〜^<n+1>. The case where M^2 is complete and noncompact is treated by da Silveira. The case where M^n, is compact is treated by Barbosa, do Carmo and Eschenburg. Luo has discussed the stability of complete noncompact hypersurfaces with constant mean curvature in R^<n+1>.Except for the case where H=0 very little is known about stability of complete and noncompact Riemannian hypersurfaces of H^<n+1> with constant mean curvature H, when 3【less than or equal】n. Second main purpose of this paper is to discuss the stability of the hypersurfaces in H^<n+1> with constant mean curvature H.
黎曼流形M^^ ~ ^<n+1>中具有常平均曲率的超曲面M^n是对面积函数在一定变化下最小化的变分问题的解;允许的变化只是那些使某个体积函数保持固定的变化。与具有常平均曲率的超曲面相关的变分问题的这种等周特性在处理此类超曲面的稳定性时引入了额外的复杂性。在欧氏(n+1)-空间R^<n+1>和欧氏(n+1)-球面S^<n+1>中有许多具有常平均曲率的完全超曲面,但在双曲(n+1)-空间H^<n+1>中,除了脐带型超曲面外,几乎没有关于这类超曲面的研究结果。本文的第一个主要目的是明确地构造三种不同类型的单参数族,H^<n+1>中具有恒定平均曲率的旋转超曲面。Barbosa, do Carmo和Eschenburg定义了黎曼流形M^^ ~ ^<n+1>中具有常平均曲率的超曲面M^n的稳定性概念。M^2是完全非紧的情况由da Silveira处理。M^n是紧致的情况由Barbosa, do Carmo和Eschenburg处理。Luo讨论了R^<n+1>范围内具有常平均曲率的完全非紧超曲面的稳定性。除了H=0的情况外,对于H^<n+1>且平均曲率H为常数的完备非紧黎曼超曲面,当3 <或等于n时,其稳定性知之甚少。本文的第二个主要目的是讨论H^<n+1>中具有恒定平均曲率H的超曲面的稳定性。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MORI,H.: "Hypersurfaces with constant mean curvature in the hyperbolic space and their global stability"in Mathematics Journal of Toyama University. (to appear).
MORI,H.:“双曲空间中具有恒定平均曲率的超曲面及其全局稳定性”,富山大学数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroohi meu: "Hypersurfaces with constant mean curvature on hyperbolic space and their global stability"Mathematical Journal of Togana University. (発表予定). (2001)
Hiroohi meu:“双曲空间上具有恒定平均曲率的超曲面及其全局稳定性”Togana 大学数学杂志(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hireohi,Mori: "Hypersurfaces with constant man curvature in hyperbolic space and thin global stability"Mathematies Journal of Toyama University. (発表予定). (2001)
Hireohi, Mori:“双曲空间中具有恒定人曲率的超曲面和薄全局稳定性”富山大学数学杂志(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kengo Matsumoto: "Dimension groups for subshifts and simplicity of the associated C^*-algebra"Journal of the Mathematical Society of Japan. vol.51, No.3. 679-698 (1999)
Kengo Matsumoto:“相关 C^* 代数的次移和简化的维度群”日本数学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORI Hiroshi其他文献
MORI Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORI Hiroshi', 18)}}的其他基金
Soil microbial community analysis to identify syntrophic relationships between microbes
土壤微生物群落分析以确定微生物之间的互养关系
- 批准号:
24770015 - 财政年份:2012
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The molecular mechanism for Aβ oligomer hypothesis in Alzheimer's disease
Aβ寡聚体假说在阿尔茨海默病中的分子机制
- 批准号:
21390271 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular imaging ofAlzheimer amyloid
阿尔茨海默病淀粉样蛋白的分子成像
- 批准号:
17300114 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of Analysis Method and Evaluation Test of Fresh Concrete.
新拌混凝土分析方法及评价试验的建立。
- 批准号:
14350300 - 财政年份:2002
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fundamental study on the molecular mechanism for neuropathological changes of dementia
痴呆神经病理改变分子机制的基础研究
- 批准号:
13210119 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Enhancement of tumoricidal activity of microglial cell via CD40-CD40 ligand interaction
通过 CD40-CD40 配体相互作用增强小胶质细胞的杀肿瘤活性
- 批准号:
13470288 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Neuropathological study on Abeta toxicity using transgenic mice with human APP
使用人APP转基因小鼠进行Abeta毒性的神经病理学研究
- 批准号:
11680742 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Fracture Simulation Method of Brittle Material with Distinct Model
脆性材料离散模型断裂模拟方法研究
- 批准号:
11450205 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
The effect of presenilin-1 on cerebral amyloid protein
presenilin-1对脑淀粉样蛋白的影响
- 批准号:
09835024 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Easy Quality Control System for Fresh Concrete
新拌混凝土简易质量控制系统的开发
- 批准号:
09555175 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
- 批准号:
23K12992 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of constant mean curvature surfaces via loop groups and Lorentz geometry
通过环群和洛伦兹几何构造恒定平均曲率曲面
- 批准号:
23K03081 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
- 批准号:
572922-2022 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
University Undergraduate Student Research Awards
The Morse index, topology and geometry of branched constant mean curvature surfaces.
分支常平均曲率表面的莫尔斯指数、拓扑和几何。
- 批准号:
2758306 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Studentship
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
- 批准号:
22K03300 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
- 批准号:
2203132 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2203218 - 财政年份:2022
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant