Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
基本信息
- 批准号:2203218
- 负责人:
- 金额:$ 33.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Singularities arise naturally in many areas of science and mathematics. Sometimes they are technical obstacles to overcome, while in other cases they encode essential features of the problem being considered. In this research the focus is on singularities of minimal submanifolds and of the Lagrangian mean curvature flow. Minimal submanifolds are higher dimensional generalizations of minimal surfaces, which model soap films. Their study is very classical, but some basic questions remain unanswered about their behavior near singularities. Special Lagrangian submanifolds are a particular kind of minimal submanifolds, which have received a great deal of attention recently due to their appearance in string theory. The Lagrangian mean curvature flow is a natural evolution process by which we can attempt to find special Lagrangian submanifolds, however once again the appearance of singularities is the basic difficulty. This research project aims to understand some common features of singularities which appear in families, in contrast with most previous research that focused on isolated singularities. Progress on this problem will have applications to many other related questions in geometry and analysis. The project also includes several educational activities aimed at increasing interest and success in STEM fields at all levels. Specifically, the educational activities include: a week long summer math circle aimed at students in grades three to five; support for undergraduate research; the continuation of a summer undergraduate workshop in geometry and topology; and the continuation of a bridge program for beginning graduate students to ease transitioning to graduate school.The most basic information that can be obtained from a singularity in many geometric problems is its tangent cone or tangent flow. The question of the uniqueness of such "tangent objects" is one of the most basic problems in geometric analysis and it is only well understood when singularities are isolated. The PI will study non-isolated singularities in two related settings: minimal hypersurfaces and the Lagrangian mean curvature flow. The tools developed for understanding the uniqueness of tangent cones and flows in these settings will also have applications to important geometric problems: the classification of minimal hypersurfaces with prescribed behavior at infinity; the generic smoothness of minimal hypersurfaces; and the possibility of surgeries at singularities along the Lagrangian mean curvature flow in connection with the Thomas-Yau conjecture. In addition to these specific applications, the PI expects that the new methods introduced in connection with the above problems will have applications in other areas of geometric analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
奇点在科学和数学的许多领域中自然出现。有时它们是需要克服的技术障碍,而在另一些情况下,它们包含了正在考虑的问题的基本特征。在这项研究中,重点是奇异性的极小子流形和拉格朗日平均曲率流。极小子流形是极小曲面的高维推广,它模拟肥皂膜。他们的研究是非常经典的,但关于他们在奇点附近的行为,一些基本问题仍然没有答案。特殊拉格朗日子流形是一类特殊的极小子流形,由于其在弦理论中的出现,近年来受到了广泛的关注。拉格朗日平均曲率流是一个自然的演化过程,通过它我们可以试图找到特殊的拉格朗日子流形,然而奇点的出现再次是基本的困难。这个研究项目的目的是了解一些共同的特点,出现在家庭中的奇点,在以往的研究,主要集中在孤立的奇点。这个问题的进展将应用于几何和分析中的许多其他相关问题。该项目还包括几项教育活动,旨在提高各级对STEM领域的兴趣和成功。具体而言,教育活动包括:针对三至五年级学生的为期一周的暑期数学圈;支持本科生研究;继续举办几何和拓扑学暑期本科生讲习班;和继续一个桥梁计划,为开始研究生,以减轻过渡到研究生院。最基本的信息,可以从一个奇点在许多几何问题是它的切向锥或切向流。问题的唯一性,这样的“切线对象”是一个最基本的问题,在几何分析,它是只有很好地理解时,奇点孤立。PI将研究两个相关设置中的非孤立奇点:极小超曲面和拉格朗日平均曲率流。为理解切锥的唯一性而开发的工具和在这些设置中的流也将应用于重要的几何问题:在无穷远处具有规定行为的极小超曲面的分类;极小超曲面的一般光滑性;以及与丘-游猜想有关的在沿着拉格朗日平均曲率流的奇点处进行手术的可能性。除了这些具体的应用外,PI还希望与上述问题相关的新方法将在几何分析的其他领域得到应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabor Szekelyhidi其他文献
Gabor Szekelyhidi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabor Szekelyhidi', 18)}}的其他基金
Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
- 批准号:
2348566 - 财政年份:2024
- 资助金额:
$ 33.74万 - 项目类别:
Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Continuing Grant
Thematic Month at CIRM in Complex Geometry
CIRM 复杂几何主题月
- 批准号:
1901659 - 财政年份:2019
- 资助金额:
$ 33.74万 - 项目类别:
Standard Grant
CAREER: Canonical metrics and stability in complex geometry
职业:复杂几何中的规范度量和稳定性
- 批准号:
1350696 - 财政年份:2014
- 资助金额:
$ 33.74万 - 项目类别:
Continuing Grant
Great Lakes Geometry Conference 2014
2014 年五大湖几何会议
- 批准号:
1359662 - 财政年份:2014
- 资助金额:
$ 33.74万 - 项目类别:
Standard Grant
Kahler geometry and canonical metrics
卡勒几何和规范度量
- 批准号:
1306298 - 财政年份:2013
- 资助金额:
$ 33.74万 - 项目类别:
Standard Grant
Canonical metrics in complex geometry
复杂几何中的规范度量
- 批准号:
0904223 - 财政年份:2009
- 资助金额:
$ 33.74万 - 项目类别:
Standard Grant
Studying the relation between stability of algebraic varieties and the existence of extremal Kahler metrics.
研究代数簇的稳定性与极值卡勒度量的存在性之间的关系。
- 批准号:
EP/D065933/1 - 财政年份:2006
- 资助金额:
$ 33.74万 - 项目类别:
Fellowship
相似国自然基金
对有序实数域o-minimal扩展上可定义函数的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
- 批准号:
2350351 - 财政年份:2024
- 资助金额:
$ 33.74万 - 项目类别:
Standard Grant
Rotation 1: Mapping the evolutionary trajectories of newly evolved minimal proteins
第 1 轮:绘制新进化的最小蛋白质的进化轨迹
- 批准号:
2643473 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Studentship
C*-algebras Associated to Minimal and Hyperbolic Dynamical Systems
与最小和双曲动力系统相关的 C* 代数
- 批准号:
2247424 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Continuing Grant
Defining the Minimal Trigger for Human Centromere Formation
定义人类着丝粒形成的最小触发因素
- 批准号:
EP/X025675/1 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Fellowship
Dynamics and clinical significance of minimal residual disease in peripheral blood collected from high-risk neuroblastoma patients.
高危神经母细胞瘤患者外周血微小残留病的动态及临床意义。
- 批准号:
23K14977 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The road from vesicles to minimal cells: metabolism, reproduction, and evolution
从囊泡到最小细胞的道路:新陈代谢、繁殖和进化
- 批准号:
23K13070 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Severity analysis of minimal change nephrotic syndrome by multifaceted assessment of mitochondrial dysfunction
通过线粒体功能障碍的多方面评估来分析微小病变肾病综合征的严重程度
- 批准号:
23K15257 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase I: An extravascular bipolar catheter for targeted nerve ablation with minimal collateral damage to surrounding tissues
SBIR 第一期:血管外双极导管,用于靶向神经消融,对周围组织的附带损伤最小
- 批准号:
2213155 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Standard Grant
Evolvable Self-Reproducing Minimal Cells: Toward Artificial Living Systems
可进化的自我复制最小细胞:走向人工生命系统
- 批准号:
23H00087 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Minimal Clinically Important Difference for 129Xe MRI Ventilation Defect Percent in Patients with Asthma
哮喘患者 129Xe MRI 通气缺陷百分比的临床重要差异极小
- 批准号:
481020 - 财政年份:2023
- 资助金额:
$ 33.74万 - 项目类别: