Dynamics of solutions near space-periodic bifurcating steady solutions of thermal convection equations

热对流方程空间周期分岔稳态解附近解的动力学

基本信息

  • 批准号:
    11640208
  • 负责人:
  • 金额:
    $ 2.43万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

Y.Kagei showed that some stationary solutions of the Obebeck-Boussinesq equation is unconditionally stable even when they are at criticality of the linearized stability. Kagei then derived a model equation of thermal convection in which the effect of viscous dissipative heating is taken into account. It was shown that the threshold of the onest of convection for this model equation is larger than that for the usual Oberbeck-Boussinesq equation and various space-periodic stationary solutions bifurcate at the threshold transcritically. Kagei also studied the Cauchy problem for the Vlasov-Poisson-Fokker-Planck equation and constructed invariant manifolds in some weighted Sobolev spaces. As a result, long-time asymptotics of small solutions were derived. S.Kawashima studied a singular limit problem for a general hyperbolic-elliptic system and proved that in the singular limit the solution of the hyperbolic-elliptic system converges to the solution of the corresponding hyperbolic-parabolic system. Kawashima also studied initial boundary value problems for discrete Boltzmann equations in the half-space and showed the existence of stationary solutions under several boundary conditions and their asymptotic stability. T.Ogawa showed that for a class of semilinear dispersive equations, solutions with initial values having one singular point like the Dirac delta function become real analytic in space and time variables except at the initial time. Ogawa also studied blow-up problem for the three dimensional Euler equation and gave a sufficient condition for blow-up in terms of some semi-norm of a generalized Besov space. T.Iguchi studied bifurcation problem of stationary surface waves and classified possible bifurcation patterns.
Y.Kagei证明了Obebeck-Boussinesq方程的某些定常解是无条件稳定的,即使它们处于线性化稳定性的临界点。然后,Kagei导出了考虑粘性耗散加热影响的热对流模型方程。结果表明,该模型方程的最小对流阈值比通常的Oberbeck-Boussinesq方程的最大对流阈值大,并且各种空间周期定常解在该阈值处发生转录分叉。Kagei还研究了Vlasov-Poisson-Fokker-Planck方程的柯西问题,并在一些加权Sobolev空间中构造了不变流形。由此,得到了小解的长时间渐近性。S.Kawashima研究了一般双曲-椭圆组的奇异极限问题,证明了在奇异极限下,双曲-椭圆组的解收敛于相应的双曲-抛物组的解。Kawashima还研究了半空间中离散Boltzmann方程的初边值问题,证明了在几种边界条件下定常解的存在性和渐近稳定性。T.Ogawa证明了对于一类半线性色散方程,初值具有一个奇点的解,如Dirac Delta函数,除了在初始时刻外,在空间和时间变量上都是实解析的。Ogawa还研究了三维Euler方程的爆破问题,并利用广义Besov空间的半范数给出了爆破的一个充分条件。井口研究了定常表面波的分叉问题,并对可能的分叉模式进行了分类。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K,Kato, T.Ogawa: "Analyticity and smoothing effect for the Korteweg-de Vries equation with a single point singularity"Mathematisch Annalen. (to appear).
K,Kato,T.Okawa:“具有单点奇点的 Korteweg-de Vries 方程的解析性和平滑效果”Mathematisch Annalen。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Iguchi: "Well-posedness of the initial value problem for Capillary-Gravity waves"Funkcialaj Ekvacioj.. (to appear).
T.Iguchi:“毛细管重力波初值问题的适定性”Funkcialaj Ekvacioj..(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Kawashima, et al.: "Stationary waves for the discrete Boltzmann equation in the half space with reflective boundaries,"Commun.Math.Phys.. 211. 183-206 (2000)
S.Kawashima 等人:“带有反射边界的半空间中离散玻尔兹曼方程的稳态波”,Commun.Math.Phys.. 211. 183-206 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Nikkuni and S.Kawashima: "Stability of stationary solutions to the half-space problem for the discrete Boltzmann equation with multiple collisions"kyushu J.Math.. 54. 233-255 (2000)
Y.Nikkuni 和 S.Kawashima:“具有多次碰撞的离散玻尔兹曼方程的半空间问题的平稳解的稳定性”kyushu J.Math.. 54. 233-255 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Kawashima and S.Nishibata: "Stationary waves for the discrete Boltzmann equation in the half space with reflective boundaries"Commun.Math.Phys.. 211. 183-206 (2000)
S.Kawashima 和 S.Nishibata:“具有反射边界的半空间中离散玻尔兹曼方程的驻波”Commun.Math.Phys.. 211. 183-206 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAGEI Yoshiyuki其他文献

KAGEI Yoshiyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAGEI Yoshiyuki', 18)}}的其他基金

Mathematical Analysis of space-time nonuniform dynamics of equations for viscous compressible fluids
粘性可压缩流体时空非均匀动力学方程的数学分析
  • 批准号:
    16H03947
  • 财政年份:
    2016
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of stablity and bifurcation for compressible fluid equations
可压缩流体方程的稳定性和分岔分析
  • 批准号:
    24340028
  • 财政年份:
    2012
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Asymptotic analysis of systems of nonlinear partial differential equations describing motions of viscous fluids
描述粘性流体运动的非线性偏微分方程组的渐近分析
  • 批准号:
    19340033
  • 财政年份:
    2007
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical analysis of thermal convection equations
热对流方程的数学分析
  • 批准号:
    14340057
  • 财政年份:
    2002
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

偶偶核集体带DeltaI=4bifurcation现象和拉伸效应的机制
  • 批准号:
    19875020
  • 批准年份:
    1998
  • 资助金额:
    7.5 万元
  • 项目类别:
    面上项目
化学反应器设计中的分支(Bifurcation)问题
  • 批准号:
    28670493
  • 批准年份:
    1986
  • 资助金额:
    2.5 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanism of grazing bifurcation and mass unification in two-mass collisional vibration systems
二质量碰撞振动系统中的掠分岔与质量统一机制
  • 批准号:
    23K13353
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Dynamic bifurcation of patterns through spatio-temporal heterogeneity
通过时空异质性动态分叉模式
  • 批准号:
    2307650
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Multiphysics of bifurcation phenomenon in nanostructures: Mechanical design of controlling brittle-ductile transition
纳米结构分岔现象的多物理场:控制脆塑转变的机械设计
  • 批准号:
    23H01295
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Patient-Specific Simulations to Guide Coronary Bifurcation Stenting
指导冠状动脉分叉支架置入的患者特异性模拟
  • 批准号:
    10810399
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
The clarification of reaction path bifurcation mechanisms affected by nuclear quantum effects
核量子效应影响的反应路径分岔机制的阐明
  • 批准号:
    23K04675
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of ultradiscrete dynamical systems for bifurcation phenomena in nonlinear nonequilibrium systems
非线性非平衡系统中分岔现象的超离散动力系统的构建
  • 批准号:
    22K03442
  • 财政年份:
    2022
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
  • 批准号:
    RGPIN-2020-05009
  • 财政年份:
    2022
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
Control of Carotid Artery Bifurcation Blood Flow
颈动脉分叉血流的控制
  • 批准号:
    575625-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
  • 批准号:
    RGPIN-2020-06414
  • 财政年份:
    2022
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
Data-Driven Approaches to Identify Biomarkers for Guiding Coronary Artery Bifurcation Lesion Interventions from Patient-Specific Hemodynamic Models
从患者特异性血流动力学模型中识别生物标志物的数据驱动方法,用于指导冠状动脉分叉病变干预
  • 批准号:
    10373696
  • 财政年份:
    2022
  • 资助金额:
    $ 2.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了