Field Theory and infinite dimensional (toroidal) algebra
场论和无限维(环形)代数
基本信息
- 批准号:11640275
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We focused on (infinite dimensiona) symmetries, which constitute one of the center pillars of theoretical physics. In particular, we investigated the toroidal algebras appearing in the higher dimensional KWZW(K\"ahler-Wess-Zumino-Witten) models and integrable systems associated with Seiberg-Witten (S-W) theory, namely, elliptic Calogero-Moser(C-M) models. Various forms of symmetry algebras in theoretical physics, in particular, field theory and quantum mechanics are clarified through this research.Main aims of the three year research were :1. realisation of toroidal algebra in infinite dimensional systems (field theories)2. realisation of (degenerate) toroidal algebra in effective field theories (S-W theory, etc) and multi-particle dynamical systems3. clarification of the transition from the toroidal to affine algebras at the levels of Lax-representation and the conserved quantities obtained from it,4. understanding the dynamical meaning of the transition from the toroidal to affine algebras at the levels of classical (and quantum) solutions of elliptic C-M systems and (affine) Toda theories,Sasaki : In the first year, he focused on the C-M models, which are integrable dynamical systems of finite degrees of freedom at the classical and quantum levels. In the second year, quantum C-M systems were investigated. In the third year, the addition of spin degrees of freedom, Hubbard type models, so-called "relativistic generalisation", the quasi-exact integrable extension, i.e. so-called Inozemtsev models, were pursued.Inami : In the first year, the relationship between symmetry algebras appearing in various integrable models and their dynamics was pursued. In the second and third years the same subjects were investigated in more detail and at deeper levels. The ultra violet divergences in three dimensional non-linear sigma models with extended supersymmetry, and kikn solutions, lump solutions of non-linear sigma models were investigated.
我们专注于(无限维)对称性,它构成了理论物理学的中心支柱之一。特别地,我们研究了出现在高维KWZW(Kahler-Wess-Zumino-Witten)模型和与Seiberg-Witten(S-W)理论相关的可积系统,即椭圆Calogero-Moser(C-M)模型中的环面代数.通过本研究,澄清了理论物理,特别是场论和量子力学中各种形式的对称代数。实现环形代数在无限维系统(场论)2。在有效场论(S-W理论等)和多粒子动力学系统中实现(退化)环形代数3。阐明了在Lax-表示水平上从环面代数到仿射代数的过渡以及由此得到的守恒量。理解椭圆C-M系统和(仿射)户田理论的经典(和量子)解水平上从环面到仿射代数过渡的动力学意义,佐佐木:在第一年,他专注于C-M模型,这是经典和量子水平上有限自由度的可积动力学系统。第二年,研究了量子C-M系统。在第三年,除了自旋自由度,哈伯德型模型,所谓的“相对论推广”,准精确可积扩展,即所谓的Inozemtsev模型,进行了追求。稻波:在第一年,对称代数之间的关系出现在各种可积模型和他们的动力学进行了追求。在第二年和第三年,对同样的主题进行了更详细和更深入的调查。研究了具有扩展超对称性的三维非线性sigma模型的紫外发散性,以及非线性sigma模型的Kikn解和集总解。
项目成果
期刊论文数量(49)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
V.I.Inozemtsev, Ryu Sasaki: "On the integrability of classical Ruijsenaars-Schneider Model of BS_2 type"Mod.Phys.Lett.. A16. 1941-1949 (2001)
V.I.Inozemtsev、Ryu Sasaki:“论 BS_2 型经典 Ruijsenaars-Schneider 模型的可积性”Mod.Phys.Lett.. A16。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
V.I. Inozemtsev and Ryu Sasaki: "On the integrability of classical Ruijsenaars-Schneider Model of BS_2 type"Mod. Phys. Lett.. A16. 1941-1949 (2001)
六、
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Caseiro and J.-P.Francoise and R.Sasaki: "Algebraic Linearization of Dynamics of Calogero Type for any Coxeter Group"J.Math.Phys.. 41. 4679-4689 (2000)
R.Caseiro 和 J.-P.Francoise 和 R.Sasaki:“任何 Coxeter 群的 Calogero 型动力学的代数线性化”J.Math.Phys.. 41. 4679-4689 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Inami,Y.Saito and M.Tamamoto: "On the finiteness of the N=4 Susy nonliear sigma model in three-dimensions"Phys.Lett.B. 495. 245-250 (2000)
T.Inami、Y.Saito 和 M.Tamamoto:“关于三维 N=4 Susy 非线性 sigma 模型的有限性”Phys.Lett.B。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
V.I.Inozemtsev, Ryu Sasaki: "On the integrability of classical Ruijsenaars-Schneider Model of BS_2 type"Mod. Phys. Lett.. A16. 1941-1949 (2001)
V.I.Inozemtsev,Ryu Sasaki:“论 BS_2 型经典 Ruijsenaars-Schneider 模型的可积性”Mod。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SASAKI Ryu其他文献
SASAKI Ryu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SASAKI Ryu', 18)}}的其他基金
Quantum symmetries and solvability
量子对称性和可解性
- 批准号:
23540303 - 财政年份:2011
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable structure in field theory and string theory
场论和弦论中的可积结构
- 批准号:
18340061 - 财政年份:2006
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exactly and quasi-Exactly Solvable multi-particle Quantum Systems and Generalized Supersymmetry
精确和准精确可解的多粒子量子系统和广义超对称性
- 批准号:
14540259 - 财政年份:2002
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solvable System with non-trivial Boundary Conditions : Quantum Group and Excahnge Algebra
具有非平凡边界条件的可解系统:量子群和交换代数
- 批准号:
06640395 - 财政年份:1994
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Calogero-Moser systems, Cherednik algebras and Frobenius structures
Calogero-Moser 系统、Cherednik 代数和 Frobenius 结构
- 批准号:
EP/F032889/1 - 财政年份:2008
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant














{{item.name}}会员




