Exactly and quasi-Exactly Solvable multi-particle Quantum Systems and Generalized Supersymmetry

精确和准精确可解的多粒子量子系统和广义超对称性

基本信息

  • 批准号:
    14540259
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

A general theorem relating the $o(hbar)$ part of the quantum spectrum to the frequencies of coupled oscillations at the equilibrium is proved for the systems having discrete energy spectrum. The theorem is verified broadly and generally for the Calogero-Sutherland and Ruijsenaars-Schneider-van Diejen systems. The polynomials describing the equilibrium points of exactly and quasi-exactly solvable systems are now quite well understood. The classical orthogonal polynomials, the Hermite, Laguerre, and Jacobi polynomials and their deformation, the Meixner-Pollaczek, continuous (dual) Hahn, Wilson, and Askey-Wilson polynomials are well-known. We have proved that the latter are describing the equilibrium positions of the Ruijsenaars-Schneider-van Diejen systems, which are integrable deformation of the Calogero-Sutherland systems. Moreover, these deformed polynomials are the exact eigenfunctions of the 'discrete' single particle quantum mechanics with shape-invariant potentials. The equations determining these equilibrium positions and those determining the spectra of quasi-exactly solvable systems have a form very similar to the Bethe ansatz equation, which suggests an interesting direction of new research. As for exactly and quasi-exactly solvable multiparticle/spin systems with the most general elliptic potentials, the high-spin Belavin systems and the elliptic quantum groups associated with the solutions of the Ruijsenaars-Schneider systems together with the structure of their Bethe ansatz equations have seen substantial progress.
事实证明,将量子频谱的$ O(HBAR)$一部分与平衡处耦合振荡的频率有关的一般定理证明了具有离散能量谱的系统。该定理对Calogero-Sutherland和Ruijsenaars-Schneider-van Diejen Systems进行了广泛的验证。现在已经充分理解了描述准确和准确解决系统的平衡点的多项式。经典的正交多项式,Hermite,Laguerre和Jacobi多项式及其变形,Meixner-Pollaczek,连续(Dual)Hahn,Wilson和Askey-Wilson的多项式。我们已经证明了后者描述了Ruijsenaars-Schneider-Van diejen Systems的平衡位置,该系统是Calogero-Sutherland Systems的可整合变形。此外,这些变形的多项式是具有形状不变电位的“离散”单粒子量子力学的确切特征函数。确定这些均衡位置的方程式以及确定准实心可解析系统光谱的方程式具有与伯特·安萨兹方程非常相似的形式,这表明了新研究的有趣方向。至于具有最一般椭圆电位的准确和准溶解的多粒子/自旋系统,高旋转的Belavin系统以及与Ruijsenaars-Schneider Systems溶液相关的椭圆量子组以及其Bethe Ansatz方程的结构,已经看到了实质性的进步。

项目成果

期刊论文数量(71)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum & Classical Eigenfunctions in Calogero & Sutherland Systems
量子
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I.Loris;R.Sasaki
  • 通讯作者:
    R.Sasaki
I.Loris, R.Sasaki: "Quantum & Classical Elgenfunctions in Calogero & Sutherland Systems"J.Phys.A. 37. 211-237 (2004)
I.Loris、R.Sasaki:“量子
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Khare, I.Loris, R.Sasaki: "Affine Toda-Sutherland Systems"J.Phys.A. 37. 1665-1680 (2004)
A.Khare、I.Loris、R.Sasaki:“仿射户田-萨瑟兰系统”J.Phys.A.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Polynomials Associated with Equilibria of Affine Toda-Sutherland Systems
与仿射托达-萨瑟兰系统平衡相关的多项式
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Odake;R.Sasaki
  • 通讯作者:
    R.Sasaki
Quantum vs Classical Integrability in Ruijsenaars-Schneider Systems
Ruijsenaars-Schneider 系统中的量子可积性与经典可积性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O.Ragnisco;R.Sasaki
  • 通讯作者:
    R.Sasaki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SASAKI Ryu其他文献

SASAKI Ryu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SASAKI Ryu', 18)}}的其他基金

Quantum symmetries and solvability
量子对称性和可解性
  • 批准号:
    23540303
  • 财政年份:
    2011
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable structure in field theory and string theory
场论和弦论中的可积结构
  • 批准号:
    18340061
  • 财政年份:
    2006
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Field Theory and infinite dimensional (toroidal) algebra
场论和无限维(环形)代数
  • 批准号:
    11640275
  • 财政年份:
    1999
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solvable System with non-trivial Boundary Conditions : Quantum Group and Excahnge Algebra
具有非平凡边界条件的可解系统:量子群和交换代数
  • 批准号:
    06640395
  • 财政年份:
    1994
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Development of Practical Post-Quantum Secure Messaging Protocols
实用后量子安全消息协议的开发
  • 批准号:
    22K17892
  • 财政年份:
    2022
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了