Exactly and quasi-Exactly Solvable multi-particle Quantum Systems and Generalized Supersymmetry

精确和准精确可解的多粒子量子系统和广义超对称性

基本信息

  • 批准号:
    14540259
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

A general theorem relating the $o(hbar)$ part of the quantum spectrum to the frequencies of coupled oscillations at the equilibrium is proved for the systems having discrete energy spectrum. The theorem is verified broadly and generally for the Calogero-Sutherland and Ruijsenaars-Schneider-van Diejen systems. The polynomials describing the equilibrium points of exactly and quasi-exactly solvable systems are now quite well understood. The classical orthogonal polynomials, the Hermite, Laguerre, and Jacobi polynomials and their deformation, the Meixner-Pollaczek, continuous (dual) Hahn, Wilson, and Askey-Wilson polynomials are well-known. We have proved that the latter are describing the equilibrium positions of the Ruijsenaars-Schneider-van Diejen systems, which are integrable deformation of the Calogero-Sutherland systems. Moreover, these deformed polynomials are the exact eigenfunctions of the 'discrete' single particle quantum mechanics with shape-invariant potentials. The equations determining these equilibrium positions and those determining the spectra of quasi-exactly solvable systems have a form very similar to the Bethe ansatz equation, which suggests an interesting direction of new research. As for exactly and quasi-exactly solvable multiparticle/spin systems with the most general elliptic potentials, the high-spin Belavin systems and the elliptic quantum groups associated with the solutions of the Ruijsenaars-Schneider systems together with the structure of their Bethe ansatz equations have seen substantial progress.
对于具有离散能谱的系统,证明了量子谱$ 0 (hbar)$部分与平衡态耦合振荡频率的一般定理。对于Calogero-Sutherland和rujsenaars - schneider -van Diejen系统,该定理得到了广泛和一般的验证。描述精确可解和准精确可解系统平衡点的多项式现在已经被很好地理解了。经典的正交多项式,Hermite, Laguerre和Jacobi多项式及其变形,Meixner-Pollaczek,连续(对偶)Hahn, Wilson和Askey-Wilson多项式都是众所周知的。我们证明了后者描述的是rujsenaars - schneider -van Diejen系统的平衡位置,它是Calogero-Sutherland系统的可积变形。此外,这些变形多项式是具有形状不变势的“离散”单粒子量子力学的精确特征函数。决定这些平衡位置的方程和决定准精确可解系统光谱的方程具有与Bethe ansatz方程非常相似的形式,这为新的研究提供了一个有趣的方向。对于具有最一般椭圆势的精确和准精确可解的多粒子/自旋系统,高自旋Belavin系统和与rujsenaars - schneider系统解相关的椭圆量子群及其Bethe ansatz方程的结构已经取得了实质性进展。

项目成果

期刊论文数量(71)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum & Classical Eigenfunctions in Calogero & Sutherland Systems
量子
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I.Loris;R.Sasaki
  • 通讯作者:
    R.Sasaki
Polynomials Associated with Equilibria of Affine Toda-Sutherland Systems
与仿射托达-萨瑟兰系统平衡相关的多项式
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Odake;R.Sasaki
  • 通讯作者:
    R.Sasaki
I.Loris, R.Sasaki: "Quantum & Classical Elgenfunctions in Calogero & Sutherland Systems"J.Phys.A. 37. 211-237 (2004)
I.Loris、R.Sasaki:“量子
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Khare, I.Loris, R.Sasaki: "Affine Toda-Sutherland Systems"J.Phys.A. 37. 1665-1680 (2004)
A.Khare、I.Loris、R.Sasaki:“仿射户田-萨瑟兰系统”J.Phys.A.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Equilibria of ‘discrete' integrable systems & deformations of classical orthogonal polynomials
“离散”可积系统的平衡和经典正交多项式的变形
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Odake;R.Sasaki
  • 通讯作者:
    R.Sasaki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SASAKI Ryu其他文献

SASAKI Ryu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SASAKI Ryu', 18)}}的其他基金

Quantum symmetries and solvability
量子对称性和可解性
  • 批准号:
    23540303
  • 财政年份:
    2011
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable structure in field theory and string theory
场论和弦论中的可积结构
  • 批准号:
    18340061
  • 财政年份:
    2006
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Field Theory and infinite dimensional (toroidal) algebra
场论和无限维(环形)代数
  • 批准号:
    11640275
  • 财政年份:
    1999
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solvable System with non-trivial Boundary Conditions : Quantum Group and Excahnge Algebra
具有非平凡边界条件的可解系统:量子群和交换代数
  • 批准号:
    06640395
  • 财政年份:
    1994
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了