Higher-order asymptotic theory and numerical analysis for three-dimensional dynamics of a vortex filament in a flw
流场涡丝三维动力学的高阶渐近理论与数值分析
基本信息
- 批准号:11640398
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Three-dimensional motion of a vortex filament was investigated theoretically.i) A general formula for velocity of an axisymmetric vortex ring in a viscous fluid was obtained. Numerical computation was carried through for an infinitely thin core at the initial instant. Expansion of ring radius compares well with an experimental measurement.ii) Asymptotic development of the Biot-Savart integral and matched asymptotic expansions were extended to a high order, whereby the third-order correction to the speed of a vortex tube was obtained. Its relevance to the localized induction hierarchy was discussed.2. Three-dimensional instability of a vortex ring was calculated from the viewpoint of Hamiltonian spectrum theory. It was shown that a parametric resonance occurs between axisymmetric and bending modes due to the curvature effect.3. Direct numerical simulations of the Navier-Stokes equations using a highly accurate finite difference scheme were performed for generation and scattering of sound waves by vortices.i) An interaction of shock waves with a vortex ring was calculated and mechanism for sound generation was clarified.ii) Pressure fluctuations of small amplitude in a far region, generated by a head-on collision of vortex rings, was successfully computed.iii) With a numerical simulation, asymptotic theories for scattering of sound by Hill's spherical vortex were assessed.iv) A numerical simulation of the Gross-Petaevskii equation was performed for sound generation in the process of reconnection of quantized vortices.4. Using a model equation for MHD turbulence, the effect of an ordered structure in large-scale magnetic field upon scaling of characteristic time and intermittency was examined.
1.从理论上研究了涡丝的三维运动。i)得到了粘性流体中轴对称涡环速度的通式。在初始时刻对无限薄的核心进行了数值计算。环半径的扩展与实验测量结果相当。ii) Biot-Savart 积分的渐近展开和匹配的渐近展开被扩展到高阶,从而获得了涡流管速度的三阶校正。讨论了它与局部归纳层次的相关性。 2.从哈密顿谱理论的角度计算了涡环的三维不稳定性。结果表明,由于曲率效应,轴对称模态和弯曲模态之间会发生参数共振。 3.使用高精度有限差分方案对纳维-斯托克斯方程进行了直接数值模拟,用于涡旋声波的产生和散射。i) 计算了冲击波与涡环的相互作用,并阐明了声音产生的机制。ii) 成功计算了涡环正面碰撞产生的远区小振幅压力脉动。iii) 通过数值模拟 4.对量子化涡重联过程中声音产生的Gross-Petaevskii方程进行了数值模拟。 4.使用 MHD 湍流模型方程,研究了大尺度磁场中有序结构对特征时间和间歇性缩放的影响。
项目成果
期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
O.Inoue,Y.Hattori,T.Sasaki: "Sound generation by coaxial collision of vortex rings"Journal of Fluid Mechanics. 424. 327-365 (2000)
O.Inoue,Y.Hattori,T.Sasaki:“涡环同轴碰撞产生声音”流体力学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Fukumoto: "Motion and expansion of a viscous vortex ring. Part 1.A higher-order asymptotic formula for the velocity"Journal of Fluid Mechanics. (発表予定). (2000)
Y.Fukumoto:“粘性涡环的运动和膨胀。第 1 部分。速度的高阶渐近公式”《流体力学》杂志(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Fukumoto,H.K.Moffatt: "Motion and expansion of a viscous vortex ring : elliptical slowing down and diffusive expansion"Proc.of Symposium on Turbulence Structure and Vortex Dynamics (eds.J.C.R.Hunt and J.C.Vassilicos, Cambridge University Press). 1-22 (2
Y.Fukumoto、H.K.Moffatt:“粘性涡环的运动和膨胀:椭圆减速和扩散膨胀”湍流结构和涡动力学研讨会论文集(J.C.R.Hunt 和 J.C.Vassilicos 编,剑桥大学出版社)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Hattori,A.Ishizawa: "Characteristic Time Scales and Energy Transfer in MHD Turbulence"Proc.of IUTAM Symposium on Geometry and Statistics of Turbulence (eds.T.Kambe,T.Nakano and T.Miyauchi,Kluwer). 59. 89-94 (2001)
Y.Hattori、A.Ishizawa:“MHD 湍流中的特征时间尺度和能量传递”IUTAM 湍流几何与统计研讨会论文集(编辑 T.Kambe、T.Nakano 和 T.Miyauchi、Kluwer)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Fukumoto: "Motion of a curved vortex filament : Higher-order asymptotics"Proc.of IUTAM Symposium on Geometry and Statistics of Turbulence (eds.T.Kambe,T.Nakano and T.Miyauchi, Kluwer). 59. 211-216 (2001)
Y.Fukumoto:“弯曲涡丝的运动:高阶渐进”Proc.of IUTAM 湍流几何与统计研讨会(eds.T.Kambe、T.Nakano 和 T.Miyauchi、Kluwer)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUKUMOTO Yasuhide其他文献
FUKUMOTO Yasuhide的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUKUMOTO Yasuhide', 18)}}的其他基金
Theory of vortex-wave interaction by deepening the topological vorticity dynamics
深化拓扑涡动力学的涡波相互作用理论
- 批准号:
24540407 - 财政年份:2012
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Lagrangian hydrodynamics for three-dimensional nonlinear instability of vortices
涡旋三维非线性不稳定性拉格朗日流体动力学的发展
- 批准号:
21540390 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three-dimensional motion of a vortex tube and quest for its optimality based on topological variational principle
基于拓扑变分原理的涡管三维运动及其最优性求解
- 批准号:
19540406 - 财政年份:2007
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Three-dimensional nonlinear stability theory of vortices from the view point of Hamiltonian dynamicalsysytems
哈密顿动力系统视角下的涡三维非线性稳定性理论
- 批准号:
16540345 - 财政年份:2004
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry breaking and Hamiltonian bifurcation theory for three-dimensional instability of a vortex tube
涡流管三维不稳定性的对称破缺和哈密顿分岔理论
- 批准号:
14540379 - 财政年份:2002
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




