Symmetry breaking and Hamiltonian bifurcation theory for three-dimensional instability of a vortex tube

涡流管三维不稳定性的对称破缺和哈密顿分岔理论

基本信息

  • 批准号:
    14540379
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

1.Three-dimensional instability of an elliptic vortex and a vortex ring was investigated from the viewpoint of the Hamiltonian spectral theory.(1)A pure shear breaks the SO(2)xO(2)-symmetry of the Rankine vortex and deforms the circular core into an ellipse.We have succeeded in explicitly writing down the infinitesimal disturbances in terms of the Bessel functions.The relation with the elliptical instability is clarified.(2)For a vortex ring, symmetry-bresking perturbation is the curvature effect. The infinitesimal disturbances on Kelvin's vortex ring are written out in a closed form.We have found a possibility of parametric resonance between pairs of Kelvin waves whose azimuthal wavenumbers are separated by two.A local stability analysis is also made, using the WKB method It is clarified that the structure of unstable modes on a Gaussian core is very different from that on Kelvin's vortex ring.(3)We have derived weakly nonlinear evolution equations of amplitudes of several unstable mo … More des on a vortex tube subjected to a pure shear, with the aid of equivariant vector fields associated with Z2xO(2) symmetry.2.When a pulse of excimer laser of a few ten nanoseconds is irradiated on a Co-coated substrate, vortex filaments are created, quenched and frozen at once.By estimating the time scales from a stability analysis in the localized induction approximation, we have extracted a dynamical picture from the micrographs of the frozen pictures.(2)By repeating the irradiation, of pulses several times, unstable vortex rings are obtained.3.For the side-band instability of a plane wave, it is proven that, near the linear critical point, the methods based on envelope equations, on amplitude equations and on a secondary-instability analysis are all equivalent.4.For the Rayleigh-Benard convection, the fifth-order amplitude equations are derived, using the center-manifold reduction, and their bifurcation analysis is made near the degeneracy point with quadratic dependence on temperature of the density being an unfolding parameter It is clarified that right-hexagonal, right-triangle and patch-work quilt patterns are unstable as a primary bifurcation solution of the generic normal form equations. Less
1。从哈米尔顿语光谱理论的角度研究了椭圆涡流和涡旋环的三维不稳定。(1)纯剪切破坏了so(2)xo(2)xo(2) - 兰金涡流的 - 对称性,并将圆形核心变形为e椭圆形,使explients explactients teclesitions tequestients condients.cline nistimity instains intallimit.cline in and and secter.cline in and and intains in and sectity in and and intains.complys in and and in consect.natime intalsim ins and and and in and and and。 (2)对于涡旋环,对称性打扰是曲率效应。开尔文涡流环上的无限惊喜以封闭形式写出。我们发现,在开尔文波之间有参数共振的可能性,其空调的波浪人通过两种局部稳定性分析。在WKB方面,也可以澄清的是,与Quussian的结构相差很大。 (3)我们已经在几个不稳定的mo的振幅中得出了弱的非线性进化方程……在涡旋管上更属于纯剪切的涡流管,借助Z2XO(2)对称性相关的纯态矢量场。2。通过在局部归纳近似中的稳定性分析中估算时间尺度,我们已经从冷冻图片的显微照片中提取了动态图片。(2)通过重复几次脉冲,几次脉冲,几次获得不稳定的涡旋环。方程,放大器方程式和二次不稳定性分析都是等效的。4。对于雷利 - 贝纳德的转换,使用中心序列降低得出了五阶放大器方程,其分支分析是在重点依赖的二次依赖和依赖的范围的依赖性和依赖的依赖性的情况下,并依赖于二次依赖的依赖,并将其分支分析构成。被子图案是通用正常形式方程的主要分叉解决方案不稳定的。较少的

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
加藤 由紀, 藤村 薫: "正方形流路における非定常熱対流への遷移の予測(温度に対する境界条件の影響)"日本機械学会論文集(B編). 68・668. 996-1001 (2002)
Yuki Kato、Kaoru Fujimura:“方形通道中非稳态热对流的预测(边界条件对温度的影响)”日本机械工程学会会刊(编辑 B)996-1001(2002 年)。 )
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Fukumoto: "The three-dimensional instability of a strained vortex tube revisited"Journal of Fluid Mechanics. 493. 287-318 (2003)
Y.Fukumoto:“重新审视应变涡管的三维不稳定性”流体力学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Fukumoto: "Three-dimensional motion of a vortex filament and its relation to the localized induction hierarchy"The European Physical Journal B. 29. 167-171 (2002)
Y.Fukumoto:“涡旋丝的三维运动及其与局部感应层次的关系”欧洲物理杂志 B.29.167-171 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Fukumoto, Y.Hattori: "Linear stability of a vortex ring revisited"Proc.of IUTAM Symposium on Tubes, Sheets and Singuraities in Fluid Dynamics (eds.H.K.Moffatt and K.Bajer, Kluwer). 71. 37-48 (2002)
Y.Fukumoto、Y.Hattori:“重新审视涡环的线性稳定性”IUTAM 流体动力学管、片和奇异性研讨会论文集(eds.H.K.Moffatt 和 K.Bajer、Kluwer)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Fukumoto, S.Lugomer: "Instability of vortex filaments in laser-matter interactions"Physics Letters A. 308. 375-380 (2003)
Y.Fukumoto、S.Lugomer:“激光-物质相互作用中涡丝的不稳定性”物理快报 A. 308. 375-380 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

FUKUMOTO Yasuhide其他文献

FUKUMOTO Yasuhide的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('FUKUMOTO Yasuhide', 18)}}的其他基金

Theory of vortex-wave interaction by deepening the topological vorticity dynamics
深化拓扑涡动力学的涡波相互作用理论
  • 批准号:
    24540407
  • 财政年份:
    2012
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Lagrangian hydrodynamics for three-dimensional nonlinear instability of vortices
涡旋三维非线性不稳定性拉格朗日流体动力学的发展
  • 批准号:
    21540390
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Three-dimensional motion of a vortex tube and quest for its optimality based on topological variational principle
基于拓扑变分原理的涡管三维运动及其最优性求解
  • 批准号:
    19540406
  • 财政年份:
    2007
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Three-dimensional nonlinear stability theory of vortices from the view point of Hamiltonian dynamicalsysytems
哈密​​顿动力系统视角下的涡三维非线性稳定性理论
  • 批准号:
    16540345
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Higher-order asymptotic theory and numerical analysis for three-dimensional dynamics of a vortex filament in a flw
流场涡丝三维动力学的高阶渐近理论与数值分析
  • 批准号:
    11640398
  • 财政年份:
    1999
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

环鄱阳湖小型净水厂活化排泥水与微涡流协同絮凝机理及数学模型研究
  • 批准号:
    52060006
  • 批准年份:
    2020
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
集成高精度磁电编码器的高可靠笼型永磁转子盘式电机系统关键技术研究
  • 批准号:
    51677078
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
楔形斜面微型涡流发生器激波/边界层干扰流动控制机理研究
  • 批准号:
    11272037
  • 批准年份:
    2012
  • 资助金额:
    86.0 万元
  • 项目类别:
    面上项目
低压自激脉冲空化射流的空泡运动及打击特性研究
  • 批准号:
    51176102
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Modeling and evaluation of escape maneuvers from the vortex ring state
涡环状态逃生机动的建模和评估
  • 批准号:
    23K04246
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Experimental analysis of vortex-ring dynamics in dense suspensions to enhance the power density and efficiency of redox flow batteries
稠密悬浮液中涡环动力学的实验分析,以提高氧化还原液流电池的功率密度和效率
  • 批准号:
    546606-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Brave new whorl: Vortex ring impingement on concave surfaces
勇敢的新螺纹:凹表面上的涡环冲击
  • 批准号:
    2211294
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Experimental analysis of vortex-ring dynamics in dense suspensions to enhance the power density and efficiency of redox flow batteries
稠密悬浮液中涡环动力学的实验分析,以提高氧化还原液流电池的功率密度和效率
  • 批准号:
    546606-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Turbulent mixing between a shock-accelerated vortex ring and its surroundings
冲击加速涡环与其周围环境之间的湍流混合
  • 批准号:
    1939809
  • 财政年份:
    2020
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了