Research on products formulae for special values of Abehan functions

Abehan函数特殊值的乘积公式研究

基本信息

  • 批准号:
    12640004
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

At the beginning of this reseach, I aimed to investigate on just the numerator of a quite natutal and unique analogy of the usual n-multiplication formula in elliptic function theory. This analogy is entirely different from the classical Abelian function theory. Our new n-multiplication formula is also a rational function of one function with contrary to the classical theory in which such formulae are essentailly of several variables.However, in the second research year, I found a remarkable determinantal expression of the denominator. The second research year is also devoted to investigation for this new expression. The result for the case of genus two was published in Glasgow Math. J.(2002), and one for the case of genus three will be publish in Tokyo J.Math. The result for the general genus case which was also submitted is available from a web page and many researchers are downloading it. Moreover I was invited from Edingburgh Math Soc., and discussed with several forign researchers.In the late of the third resaerch year, I made a number theoretical study for the functions appearing in the determinant expression above. Namely, about the Laurent coefficients of the developments at the origin of the functions. The coefficients resemble strongly to the Bernoulli numbers(the coefficients of the function 1/tan(u)), and the Hurwitz numbers, (the coefficients of an elliptic function p(u) of cyclotomic type). Indeed, they satisfy von Staudt-Clausen type theorem and Kummer type congruence relation. Such the properties were proved completely and the paper is now on the Web.This grant-aid is used mainly for the travels of the head and sub-investigators, with aimed at finding bibliographies and to present the results in several institutions.
在这项研究的开始,我的目的是研究椭圆函数理论中常见的n乘法公式的一个相当自然和唯一的类比的分子。这种类比与经典的阿贝尔函数理论完全不同。我们的新n乘法公式也是一个函数的有理函数,这与经典的n乘法公式本质上是多个变量的理论相反,但在第二个研究年,我发现了分母的一个显著的行列式表达式。第二个研究年也致力于对这一新表达的研究。第二类的研究结果发表在《格拉斯哥数学》杂志上。J.(2002),关于属3的一个将在东京数学杂志上发表。也提交了一般属案例的结果,可以从网页上获得,许多研究人员正在下载它。第三年末,我对上述行列式中出现的函数进行了一些理论研究。即关于函数原点的发展的洛朗系数。这些系数与Bernoulli数(函数1/tan(U)的系数)和Hurwitz数(分圆型椭圆函数p(U)的系数)非常相似。事实上,它们满足von Staudt-Clausen型定理和Kummer型同余关系。这些性质得到了完全的证明,这篇论文现在已经上了网。这项赠款主要用于主管和副调查人员的旅行,目的是寻找书目,并在几个机构展示结果。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Odai, Hiroshi Suzuki: "The rank of the group of relative units of a Galois extension"Tohoku Math.J.. 53. 37-54 (2001)
Y.Odai、Hiroshi Suzuki:“伽罗瓦扩展的相对单位群的等级”Tohoku Math.J.. 53. 37-54 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshihiro Onishi: "Determinant expressions for hyperelliptic functions in genus three"Tokyo Journal of Mathematics. (未定).
Yoshihiro Onishi:“属三中超椭圆函数的行列式”东京数学杂志(待定)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
尾台喜孝, 河本史紀: "総実代数体の不分岐アーベル拡大のnormal integral basis"第六回津田塾大学整数論シンポジウム報告集. 69-74 (2001)
Yoshitaka Odai、Fumiki Kawamoto:“总实代数域的无支阿贝尔扩展的正规积分基础”第六届津田大学数论研讨会报告69-74(2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshihiro Onishi: "Determinantal expressions for hyperelliptic functions in genus three"Tokyo Journal of Mathematics. 未定.
大西义博:“属三超椭圆函数的行列式”东京数学杂志待定。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
F.Kawamoto, Y.Odai: "Normal integral basis of ∞-ramified Abelian extensions of totally real number fields"Abhandlungen aus dem Mathematishen Seminar der Universitat Hamburg. 72. 217-233 (2002)
F.Kawamoto、Y.Odai:“全实数域的 Infinity 分支阿贝尔扩展的正规积分基础”Abhandlungen aus dem Mathematishen Seminar der Universitat 72. 217-233 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ONISHI Yoshihiro其他文献

ONISHI Yoshihiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ONISHI Yoshihiro', 18)}}的其他基金

Development and evaluation of a tool to support learning of statistical analysis in nursing research
支持护理研究统计分析学习的工具的开发和评估
  • 批准号:
    26463271
  • 财政年份:
    2014
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research toward to construct a concrete theory of Abelian functions
阿贝尔函数具体理论的构建研究
  • 批准号:
    19540002
  • 财政年份:
    2007
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on determinantal formulae and Bernoulli-Hurwitz numbers in the theory of Abelian functions
阿贝尔函数理论中的行列式和Bernoulli-Hurwitz数研究
  • 批准号:
    16540002
  • 财政年份:
    2004
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Differential Galois theory and linear algebraic groups over algebraic function fields
代数函数域上的微分伽罗瓦理论和线性代数群
  • 批准号:
    279644768
  • 财政年份:
    2015
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Research Grants
The p-rank of Algebraic function fields in characteristic p at Colorade State University
科罗拉多州立大学特征 p 代数函数域的 p 秩
  • 批准号:
    417700-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Algorithms and cryptography in algebraic function fields
代数函数域中的算法和密码学
  • 批准号:
    250246-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and cryptography in algebraic function fields
代数函数域中的算法和密码学
  • 批准号:
    250246-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and cryptography in algebraic function fields
代数函数域中的算法和密码学
  • 批准号:
    250246-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic function fields and cryptography
代数函数域和密码学
  • 批准号:
    327640-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and cryptography in algebraic function fields
代数函数域中的算法和密码学
  • 批准号:
    250246-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic function fields and cryptography
代数函数域和密码学
  • 批准号:
    327640-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and cryptography in algebraic function fields
代数函数域中的算法和密码学
  • 批准号:
    250246-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Cryptography in Algebraic Function Fields
代数函数域中的算法和密码学
  • 批准号:
    250246-2002
  • 财政年份:
    2005
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了