Number theory for positive characteristics and its application to elliptic curve cryptography
正特征数论及其在椭圆曲线密码中的应用
基本信息
- 批准号:12640009
- 负责人:
- 金额:$ 2.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We establish and develop a p-adic point counting algorithm for elliptic curves over finite fields of small characteristics. Let p be a fixed small prime and put q to be the N-th power of p. For a given ordinal elliptic curve E defined over the finite field k of q elements, we construct a fast algorithm to compute the number of k-rational points of E. When a small prime p is fixed and N tends to infinity, our algorithm is faster than the so-called SEA algorithm.Our algorithm is based on the canonical lifts of elliptic curves. First we lift a given ordinal elliptic curve to its canonical lift. We use the fact that two j-invariants of lifted curves are related by the p-th modular polynomial. So, construction of the canonical lifts is reduced to find a solution to a certain system of non-linear equations. Second, we compute the leading coefficient of the dual of the lift of the p-th Frobenius morphism. This should not be confused with the inverse Frobenius substitution, since we are working over the field of characteristic zero once the curve is lifted. Third, by looking at the action of the dual of the lifted Frobenius morphism, we can compute the trace of the q-th Frobenius endomorphism. Using well-known Hasse's equality, we obtain the number of the rational points and we are done.We further construct a faster algorithm, with some precomputations which depends on only on q. The precomputation is quite feasible for the case that N is less than, say, 500. Hence the cost of precomputation is no problem for practical applications. On the other hand, thanks to the precomputation, we can evaluate the Frobenius substitution quickly. This ameliorates the growth rate of time complexity with respect to a number of bit operations by a factor of at least the square root of N.
建立并发展了一个小特征有限域上椭圆曲线的p-adic点计数算法。设p是一个固定的小素数,q是p的N次幂,对于给定的定义在q元有限域k上的有序椭圆曲线E,我们构造了一个计算E的k-有理点数的快速算法.当小素数p固定且N趋于无穷大时,我们的算法比SEA算法更快。首先,我们提升一个给定的有序椭圆曲线,其典型的电梯。我们利用提升曲线的两个j-不变量由第p次模多项式相关的事实。因此,正则提升的构造被简化为找到某个非线性方程组的解。其次,我们计算了p阶Frobenius态射的提升的对偶的首系数。这不应该与逆弗罗贝纽斯替换混淆,因为一旦曲线被提升,我们就在特征零的域上工作。第三,通过观察提升的Frobenius态射的对偶的作用,我们可以计算第q个Frobenius自同态的迹。利用著名的Hasse等式,我们得到了有理点的个数,我们完成了。我们进一步构造了一个更快的算法,其中一些预计算只依赖于q。对于N小于500的情况,预先计算是非常可行的。因此,预计算的成本对于实际应用来说是没有问题的。另一方面,由于预先计算,我们可以快速评估Frobenius替换。这将时间复杂度相对于位操作的数量的增长率改善了至少N的平方根的因子。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y. Gon: "Generalized Whittaker functions on SU(2, 2) with respect to the Siegel parabolic subgroup"Memor. Amer. Math. Soc.. 155. viii+116 (2002)
Y. Gon:“关于 Siegel 抛物线子群的 SU(2, 2) 上的广义 Whittaker 函数”Memor。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Satoh: "On p-adic point counting algorithms for elliptic curves over finite fields"Lect. Notes in Comput. Sci.. 2369. 43-66 (2002)
T.Satoh:“关于有限域上椭圆曲线的 p-adic 点计数算法”Lect。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takakazu Satoh: "The canonical lift of an ordinary elliptic curve over finite field and its point counting"J.Ramanujan Math.Soc.. 15. 247-270 (2000)
Takakazu Satoh:“有限域上普通椭圆曲线的规范升力及其点计数”J.Ramanujan Math.Soc.. 15. 247-270 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Satoh: "The canonical lift of elliptic curve over a finite field and its point counting"J. Rmanujan Math. Soc.. 15. 247-270 (2000)
T. Satoh:“有限域上椭圆曲线的正则升力及其点计数”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Satoh, B. Skjernaa, Y. Taguchi: "Fast computation of canonical lifts of elliptic curves and its application to point counting"Finite Fields and Their Appl.. 9. 89-101 (2003)
T. Satoh、B. Skjernaa、Y. Taguchi:“椭圆曲线正则升力的快速计算及其在点计数中的应用”Finite Fields and Their Appl.. 9. 89-101 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATOH Takakazu其他文献
SATOH Takakazu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATOH Takakazu', 18)}}的其他基金
On security of pairing based elliptic curve cryptosystems in view of number theory
从数论角度论基于配对的椭圆曲线密码系统的安全性
- 批准号:
18340005 - 财政年份:2006
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on algorithm to compute special values for non holomorphic Eisenstein series
非全纯艾森斯坦级数特殊值计算算法研究
- 批准号:
15540008 - 财政年份:2003
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23K25768 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fourier analytic techniques in finite fields
有限域中的傅立叶分析技术
- 批准号:
EP/Y029550/1 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Research Grant
Brauer groups and Neron Severi groups of surfaces over finite fields
有限域上的表面布劳尔群和 Neron Severi 群
- 批准号:
23H01071 - 财政年份:2023
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Galois module theory for curves over finite fields
有限域上曲线的伽罗瓦模理论
- 批准号:
2751003 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Studentship
Mappings and Sequences over Finite Fields
有限域上的映射和序列
- 批准号:
RGPIN-2018-05328 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Geometry and Dynamics over Finite Fields
有限域上的算术几何和动力学
- 批准号:
557298-2021 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Postdoctoral Fellowships
Counting Irreducible Polynomials over Finite Fields
计算有限域上的不可约多项式
- 批准号:
575410-2022 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Finite fields and applications in coding theory and cryptography
编码理论和密码学的有限领域和应用
- 批准号:
RGPIN-2017-06410 - 财政年份:2022
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual
Integral points on stacks, hyperplane sections over finite fields, and vectors forming rational angles
堆栈上的积分点、有限域上的超平面截面以及形成有理角的向量
- 批准号:
2101040 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Continuing Grant
Mahler measure and curves over finite fields
有限域上的马勒测量和曲线
- 批准号:
355412-2013 - 财政年份:2021
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




