Integral points on stacks, hyperplane sections over finite fields, and vectors forming rational angles
堆栈上的积分点、有限域上的超平面截面以及形成有理角的向量
基本信息
- 批准号:2101040
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aristotle incorrectly claimed that one could fill space with copies of a regular tetrahedron. Determining which nonregular tetrahedra can fill space is a 2300-year-old unsolved problem that the investigator will study using a new approach using tools from algebraic geometry and number theory. As a stepping stone towards this, the investigator will study a larger class of tetrahedra, those that can be sliced into finitely many pieces and reassembled into a cube; no new such tetrahedra have been found since 1974. In addition, the investigator will study other questions concerning the solutions to systems of equations; for example, generalizing the fact that the discriminant b^2-4ac of a quadratic polynomial ax^2+bx+c determines whether its roots coincide, the investigator will study the geometric meaning of the discriminant of a higher degree polynomial in many variables. Graduate and undergraduate students supported by the award will receive training to contribute towards these projects. The investigator will classify tetrahedra of Dehn invariant 0 (scissors-congrent to a cube) by relating this vanishing to the solutions of a system of exponential Diophantine equations, which will be studied a combination of Galois-theoretic and p-adic methods. The tetrahedra that can tile space are among these, so these Dehn invariant 0 tetrahedra will be tested for the ability to tile by using geometric and combinatorial methods, making use of computation to construct tilings or to rule them out. The investigator will extend the theory of cohomological obstructions to understand integral points on stacks instead of just varieties; such a study would have implications for rational points on varieties that admit morphisms to lower-dimensional stacks. He will relate geometry of a variety in P^n over a finite field to the moments of point counts of random hyperplane sections. Finally, he will explain the valuation of the discriminant of a projective hypersurface in terms of its geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
亚里士多德错误地声称,人们可以用正四面体的副本填充空间。 确定哪些不规则四面体可以填充空间是一个2300年前的未解决问题,研究人员将使用代数几何和数论的工具使用新方法进行研究。作为实现这一目标的垫脚石,研究人员将研究一个更大的四面体类别,这些四面体可以被切成许多块并重新组装成立方体;自1974年以来,没有发现新的四面体。此外,研究者还将研究与方程组解有关的其他问题;例如,推广二次多项式ax ^2 +bx+c的判别式b^2-4ac决定其根是否重合的事实,研究者将研究多变量高阶多项式判别式的几何意义。该奖项支持的研究生和本科生将接受培训,为这些项目做出贡献。研究人员将分类四面体的德恩不变0(剪刀-平行于立方体),通过将这种消失与指数丢番图方程组的解相关联,将研究伽罗瓦理论和p-adic方法的组合。可以拼接空间的四面体就是其中之一,因此这些德恩不变0四面体将通过使用几何和组合方法测试拼接的能力,利用计算来构建拼接或排除它们。研究者将扩展上同调障碍理论,以理解栈上的积分点,而不仅仅是变种;这样的研究将对允许态射进入低维栈的变种上的有理点产生影响。他将涉及几何的各种P^n在有限领域的时刻点计数的随机超平面部分。最后,他将解释投影超曲面的判别式的几何估值。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The proportion of derangements characterizes the symmetric and alternating groups
混乱的比例表征了对称组和交替组
- DOI:10.1112/blms.12639
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Poonen, Bjorn;Slavov, Kaloyan
- 通讯作者:Slavov, Kaloyan
Introduction to Drinfeld modules
Drinfeld 模块简介
- DOI:10.1090/conm/779/15675
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Poonen, Bjorn
- 通讯作者:Poonen, Bjorn
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bjorn Poonen其他文献
On constructing solutions to S-unit equations in Q ∞ ,ℓ
关于构造 Q ∞ ,ℓ 中 S 单位方程的解
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Maxim Li;Misheel Otgonbayar;Minh;Bjorn Poonen;Andrew Sutherland - 通讯作者:
Andrew Sutherland
Arithmetic and Diophantine Geometry
算术和丢番图几何
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Baker;Enrique Gonz´alez;Josep Gonz´alez;Bjorn Poonen - 通讯作者:
Bjorn Poonen
HEURISTICS FOR THE ARITHMETIC OF ELLIPTIC CURVES
椭圆曲线算术的启发式
- DOI:
10.1142/9789813272880_0060 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Bjorn Poonen - 通讯作者:
Bjorn Poonen
Packing random intervals
- DOI:
10.1007/bf01295224 - 发表时间:
1995-03-01 - 期刊:
- 影响因子:1.600
- 作者:
E. G. Coffman;Bjorn Poonen;Peter Winkler - 通讯作者:
Peter Winkler
Bjorn Poonen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bjorn Poonen', 18)}}的其他基金
Conference: The Mordell conjecture 100 years later
会议:100年后的莫德尔猜想
- 批准号:
2420166 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Graduate Workshop in Algebraic Geometry for Women and Mathematicians of Minority Genders
女性和少数族裔数学家代数几何研究生研讨会
- 批准号:
1821177 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Arithmetic of Abelian Varieties in Families
族中阿贝尔簇的算术
- 批准号:
1204946 - 财政年份:2012
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Random maximal isotropic subspaces and Selmer groups
随机最大各向同性子空间和 Selmer 群
- 批准号:
1069236 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Rational points on varieties in families, and countable unions of varieties over countable fields
科内品种的有理点以及可数域内品种的可数并集
- 批准号:
0841321 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Rational points on varieties in families, and countable unions of varieties over countable fields
科内品种的有理点以及可数域内品种的可数并集
- 批准号:
0801263 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Geometric constructions over finite fields, elementary equivalence of finitely generated fields, and rational points on varieties
有限域上的几何构造、有限生成域的基本等价以及簇上的有理点
- 批准号:
0301280 - 财政年份:2003
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Computational Aspects of Hyperelliptic Curves
超椭圆曲线的计算方面
- 批准号:
9801104 - 财政年份:1998
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
光子人工微结构中Exceptional Points附近的模式耦合及相关新特性研究
- 批准号:11674247
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
用多重假设检验方法来研究方差变点问题
- 批准号:10901010
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multidisciplinary analysis of financial reference points and wellbeing
财务参考点和福祉的多学科分析
- 批准号:
DP240101927 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Discovery Projects
Chimella application for Sap points accreditation
Chimella 申请 Sap 积分认证
- 批准号:
10106576 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
Exploring Tipping Points and Their Impacts Using Earth System Models (TipESM)
使用地球系统模型探索临界点及其影响 (TipESM)
- 批准号:
10090271 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
EU-Funded
Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
- 批准号:
2328407 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
TipESM: Exploring Tipping Points and Their Impacts Using Earth System Models
TipESM:使用地球系统模型探索临界点及其影响
- 批准号:
10103098 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
EU-Funded
Climate Tipping Points: Uncertainty-aware quantification of Earth system tipping potential from observations and models and assessment of associated climatic, ecological, and socioeconomic impacts
气候临界点:通过观测和模型以及对相关气候、生态和社会经济影响的评估,对地球系统潜在的不确定性进行量化
- 批准号:
10090795 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
EU-Funded
Optic: A solution to Events Related Terrorism and Event Security Pain Points
Optic:事件相关恐怖主义和事件安全痛点的解决方案
- 批准号:
10084791 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
Development of a novel therapeutic drug targeting both MDM4 and PKC, critical points in uveal malignant melanoma
开发针对葡萄膜恶性黑色素瘤关键点 MDM4 和 PKC 的新型治疗药物
- 批准号:
23K09020 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Social Tipping Points and Norm Change in Large-scale Laboratory Experiments
大规模实验室实验中的社会临界点和规范变化
- 批准号:
2242443 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
First high-resolution studies of photospheric bright points as heating drivers: early DKIST science
首次对光球亮点作为加热驱动因素的高分辨率研究:早期 DKIST 科学
- 批准号:
2308075 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant