Representation theory and combinatorics of classical groups, quantum groups and Hecke algebras
经典群、量子群和赫克代数的表示论和组合学
基本信息
- 批准号:12640011
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Throughout the two years, we investigated the possibility of providing some combinatorial interpretation to the "generalized Robinson-Schensted correspondence for real Lie groups" in the case where the group is SU^*(2n), explicitly described by P. Trapa. This is a bijection between the so-called Brauer diagrams on 2n points (which can also be interpreted as the fixed-point-free involutions) and the standard Young tableaux with 2n boxes whose column lengths are all even. One possible approach is, utilizing the fact that the classical Robinson-Schensted correspondence gives a bijection between the same sets, to find a transformation on Brauer diagrams which, when composed with the classical Robinson-Schensted correspondence, gives Trapa's bijection. Another possible approach is to characterize Trapa's bijection using some combinatorial quantities, in the same sense that the classical Robinson-Schensted correspondence can be characterized by certain invariants of posets due to Greene and … More Kleitman. In the first year, we obtained a conjecture in the second direction. We are still in pursuit of this conjecture Through interaction with various researchers, both domestic and overseas, we have received several interesting suggestions. One is to look for further possibility of extending our geometric interpretation to the Knuth version of the updown Robinson-Schensted correspondence devised by Pak and Postnikov. There has been another suggestion, somewhat related, that the irreducible decomposition of the variety of N-stable flags with gaps in dimensions is not yet clear. In view of these suggestions, it looks also necessary to find new approaches to combinatorial interpretations through generalization to the Knuth version, possibly as well as piecewise linear version. On the other hand, we continued to support T. Roby's research on constructing bijections giving the formal character identities corresponding to the decomposition of the tensor powers of the Weil representation of Sp(2n, R). This has come to a conclusion in the case n = 2. Less
在这两年中,我们研究了在群是由P. Trapa明确描述的SU^*(2n)的情况下,为“实李群的广义Robinson-Schensted对应”提供一些组合解释的可能性。这是2n个点上的所谓布劳尔图(也可以解释为不动点的对合)和2n个列长度都是偶数的方框的标准杨图之间的对射。一种可能的方法是,利用经典的Robinson-Schensted对应给出相同集合之间的双射这一事实,在Brauer图上找到一个变换,当与经典的Robinson-Schensted对应组合时,得到Trapa的双射。另一种可能的方法是使用一些组合量来表征Trapa的双射,在同样的意义上,经典的Robinson-Schensted对应可以用Greene和…More Kleitman的偏置集的某些不变量来表征。第一年,我们得到了第二个方向的猜想。通过与国内外研究者的交流,我们收到了一些有趣的建议。一个是寻找进一步的可能性,将我们的几何解释扩展到帕克和波斯特尼科夫设计的上下罗宾逊-申斯特对应的高努斯版本。还有另一种建议,在某种程度上是相关的,即具有尺寸间隙的n稳定标志的各种不可约分解尚不清楚。鉴于这些建议,似乎也有必要通过推广到Knuth版本,以及分段线性版本,找到新的组合解释方法。另一方面,我们继续支持T. Roby关于构造双射的研究,给出了Sp(2n, R)的Weil表示的张量幂的分解所对应的形式特征恒等式。这在n = 2的情况下得到了结论。少
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
小池和彦: "Spin representations and contralizer algebras for Spin(2n)"京都大学数理解析研究所講究録. (発表予定).
小池和彦 (Kazuhiko Koike):“Spinrepresentations and contralizer algebras for Spin(2n)”京都大学数学科学研究所讲义(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小林俊行: "Discretely decomposable restrictions of unitary representations of reductive Lie groups-examples and conjectures"論文集 Analysison homogeneous spaces and representation theory(Advanced studies in Pure Mathematics). 26. 98-126 (2000)
小林敏之:“还原李群的酉表示的离散可分解限制——实例与猜想”论文集齐次空间与表示论分析(纯数学高级研究)26. 98-126(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhiko Koike: "Spin representations and centralizer algebras for Spin(2n + 1)"Surikaisekikenkyusho Kokyuroku (to appear).
Kazuhiko Koike:“Spin 的自旋表示和中心化代数(2n 1)”Surikaisekikenkyusho Kokyuroku(待出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroyuki Ochiai (with H. Ishihara, Y. Takegahara, T. Yoshida): "On the power of a prime p dividing the number of solutions of x^p = 1 in a symmetric group"Annals of Comb. 5. 197-210 (2001)
Hiroyuki Ochiai(与 H. Ishihara、Y. Takegahara、T. Yoshida):“关于素数 p 的幂除对称群中 x^p = 1 的解的数量”Annals of Comb。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
落合啓之: "Non-commutative harmonic escillators and Fuchsian ordinary differential operators"Communications in Mathematical Physics. (発表予定).
Hiroyuki Ochiai:“非交换谐波振荡器和 Fuchsian 常微分算子”数学物理通讯(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TERADA Itaru其他文献
TERADA Itaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TERADA Itaru', 18)}}的其他基金
Representation theory and combinatorics of classical groups, quantum groups and Hecke algebras
经典群、量子群和赫克代数的表示论和组合学
- 批准号:
23540008 - 财政年份:2011
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory (of classical groups, quantum groups and Hecke algebras) and combinatorics
表示论(经典群、量子群和赫克代数)和组合学
- 批准号:
19540012 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory and combinatorics of classical groups, quantum groups and Hecke algebras
经典群、量子群和赫克代数的表示论和组合学
- 批准号:
09640012 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
- 批准号:
2401049 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Higher Representation Theory and Subfactors
更高表示理论和子因素
- 批准号:
2400089 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2416129 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Continuing Grant
An application of mock modular forms to representation theory
模拟模块化形式在表示论中的应用
- 批准号:
23K19018 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
- 批准号:
EP/W014882/2 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Research Grant
Combinatorial structures appearing in representation theory of quantum symmetric subalgebras, and their applications
量子对称子代数表示论中出现的组合结构及其应用
- 批准号:
22KJ2603 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows














{{item.name}}会员




