Classification of higher dimensional hypersurface singularities in terms of non-degenerate complete intersections

根据非简并完全交集对高维超曲面奇点进行分类

基本信息

  • 批准号:
    12640020
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

On the main theme of this project :(1) In 2000, M. Tomari studied the nitration of ideals on terminal singularities where the associated graded rings are integral domains with isolated singularity. As a special case, he showed the regularity of their associated graded rings of 3-dimensional regular local ring. In 1 2001, Tomari gave an inequality about Milnor number μ(f) of a hypersurface isolated singularity Uin terms of weighted Taylor expansion of the defining equation f. Here the equality holds iiand only if the initial form defines an isolated singularity. This gives a characterization of a semiquasi-homogeneous condition in terms of μ. The proof uses a result of Tomari on multiplicity of filtered ring.(2) T. Hayakawa studied several partial resolutions of 3-dimensipnal terminal singularities with index is not less than two. In 2000, he constructed an interesting example which admits a partial resolution where at worst Gorenstein terminal singularities remain. This was understood naturally by the' studies of the special partial resolution of rational double points which appears as the general members of anti-canonical linear system of the singularity. In 2001 he also studied the irreducible components of this type of partial resolution.As related-works on complex analysis :(3) H. Fujimoto had succeeded to construct a new series of examples of hyperbolic hypersurfaces of degree 2^n in n-dimensional complex protective spaces. In the case of n = 2, this example gives the world record of the minimal possible degree of the ambient spaces for such situation.(4) A. Kodama studied the general ellipsoids with not necessary smooth boundaries from the points of view of the Webster metric.
(1)2000年,M.托马里研究了终端奇点上理想的硝化,其中相关的分次环是具有孤立奇点的整环。作为特例,他证明了三维正则局部环的相关分次环的正则性。2001年1月,托马里利用定义方程f的加权泰勒展开给出了关于超曲面孤立奇点U的Milnor数μ(f)的一个不等式.这里等式成立,且仅当初始形式定义了一个孤立奇点。这给出了关于μ的半拟齐次条件的特征。证明使用了托马里关于滤环重数的一个结果。(2)T. Hayakawa研究了指数不小于2的三维终端奇点的几种部分分解。在2000年,他构造了一个有趣的例子,承认部分决议,在最坏的Gorenstein终端奇点仍然存在。这一点在研究作为奇异反正则线性系统一般成员的有理二重点的特殊部分分解时得到了自然的理解。2001年他还研究了这类部分分解的不可约分支。藤本成功地在n维复保护空间中构造了一系列2^n次双曲超曲面的新例子。在n = 2的情况下,这个例子给出了这种情况下周围空间的最小可能度的世界纪录。(4)A.儿玉研究了一般的椭球没有必要光滑边界的观点的韦伯斯特度量。

项目成果

期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M. Tomari: "Multiplicity of filtered rings and simple K3 singularities of multiplicity two"Publ. Res. Inst. Math. Sci. Kyoto Univ.. (to appear).
M. Tomari:“滤波环的多重性和多重性二的简单 K3 奇点”Publ。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Fujimoto: "On uniqueness of meromorphic functions sharing finite sets"Amer. J. Math.. 122. 1175-1203 (2000)
H. Fujimoto:“论共享有限集的亚纯函数的唯一性”Amer。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Morishita, and T. Watanabe: "Adele Geometry of Numbers, Class Field Theory - its Centenary and Prospect (ed. By K. Miyake)"The Adv. Stud, in Pure. Math.. 30. 509-536 (2001)
M. Morishita 和 T. Watanabe:“阿黛尔数几何、类场论 - 百年纪念和展望(K. Miyake 编)”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Fujimoto: "A family of hyperbolic hypersurfaces in the complex space"Complex Variables. 43. 273-283 (2001)
H.Fujimoto:“复空间中的双曲超曲面族”复变量。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Ishii., M.Tomari: "Hyper surface non-rational singularities which look canonical from their Newton boundaries"Math. Zeitschrift. 237. 125-147 (2001)
S.Ishii.,M.Tomari:“从牛顿边界来看,超表面非理性奇点看起来是规范的”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TOMARI Masataka其他文献

TOMARI Masataka的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TOMARI Masataka', 18)}}的其他基金

Classification of isolated singularities by means of algebraic geometric studies of invariants
通过不变量的代数几何研究对孤立奇点进行分类
  • 批准号:
    18540051
  • 财政年份:
    2006
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Filtered blowing-up of local rings and algebraic geometric classification of singularities
局部环的滤波放大和奇点的代数几何分类
  • 批准号:
    16540043
  • 财政年份:
    2004
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Filtered blowing-up of singularities and algebraic geometric properties of tangent cone
奇点的过滤吹胀和正切锥体的代数几何性质
  • 批准号:
    14540017
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebro-geometric studies of rational singularities and related singularities by blowing-ups
通过爆炸对有理奇点和相关奇点进行代数几何研究
  • 批准号:
    09640021
  • 财政年份:
    1997
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

SHF: Medium: Reasoning about Multiplicity in the Machine Learning Pipeline
SHF:Medium:机器学习管道中多重性的推理
  • 批准号:
    2402833
  • 财政年份:
    2024
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
Genetic and biophysical mechanisms that control influenza virus cellular multiplicity of infection
控制流感病毒细胞感染多重性的遗传和生物物理机制
  • 批准号:
    10659426
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
Postdoctoral Fellowship: AAPF: From Dense Clusters to OB Associations: Tracing the Impact of Dynamics on Multiplicity beyond 10 AU in the Orion Complex
博士后奖学金:AAPF:从密集星团到 OB 关联:追踪动态对猎户座复合体 10 个天文单位以上多重性的影响
  • 批准号:
    2303911
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Fellowship Award
Elucidating spin-multiplicity-dependent excited-state dynamics of luminescent multiradicals
阐明发光多自由基的自旋多重性依赖的激发态动力学
  • 批准号:
    23K04699
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The "Double M" Project: The Impact of Magnetism and Multiplicity on the Evolution of Massive Stars
“双M”项目:磁性和多重性对大质量恒星演化的影响
  • 批准号:
    23K19071
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Transformation of Corporate Behavior Model and Revitalization of Management Accounting Techniques Using Multiplicity of Valuation Axes and Probability Valuation
利用多重估值轴和概率估值实现企业行为模型的转变和管理会计技术的振兴
  • 批准号:
    23K01668
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
TOPOLOGY OF SOBOLEV SPACES AND QUASICONVEXITY: MULTIPLICITY AND SINGULARITY ANALYSIS FOR EXTREMALS AND LOCAL MINIMIZERS
Sobolev空间拓扑和拟凸性:极值和局部极小值的多重性和奇异性分析
  • 批准号:
    EP/V027115/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Research Grant
Algorithms for multiplicity matrices in local representation theory
局部表示论中的重数矩阵算法
  • 批准号:
    574711-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    University Undergraduate Student Research Awards
High Multiplicity Strip Packing
高多样性带状包装
  • 批准号:
    548083-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Compactness Analysis for Critical Elliptic Equations of the Caffarelli-Kohn-Nirenberg Type and Applications to Questions of Existence and Multiplicity
Caffarelli-Kohn-Nirenberg型临界椭圆方程的紧致性分析及其在存在性和多重性问题中的应用
  • 批准号:
    546917-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了