Mordell-Weil Lattices of Elliptic Curves and Abelian Varieties

椭圆曲线和阿贝尔簇的 Mordell-Weil 格子

基本信息

  • 批准号:
    12640044
  • 负责人:
  • 金额:
    $ 2.43万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

(1) Integral Points and Mordell-Weil Lattices.As an application of Mordell-Weil Lattices, we have developed a method to study integral points in the function field case. In some favorable situation, this method gives a very efficient way for a complete determination of all the integral points of an elliptic curve. [S1](2) K3 Surfaces and Sphere PackingsWe hare obtained lattice sphere packings in higher dimensional case (especially dimension 16, 17, 18) of fairly large packing density, by means of the Mordell-Weil Lattices of certain elliptic K3 surfaces. [S3](3) Invariant theory of plane quartics vs Mordell-Weil LatticesWe hare established a close relationship of the classical invariant theory of plane quartics (moduli of genus three curves) and the invariant theory of the Weyl group of type E_7 (a finite group). [S4](4) Some codes arising from the elliptic modular surfacesFor any N. we have constructed a linear code over the residue ring mod N which is associated with the elliptic modular surfaces of level N. If N is a prime number, this linear code over a field of N elements has a remarkable property that every nonzero code-word has a constant Bernoulli norm. The construction is based on the height formula of Mordell-Weil Lattices, [S2](5) Tate-Shafarevich group of elliptic curvesAoki has proven that the 3-part of Tate-Shafarevich group can be arbitrarily large. [A2](6) Hodge conjecture of abelian varietiesThe Hodge cycles on the Jacobian variety of a Fermat curve are studied from combinatorial viewpoint. By this, the Hodge conjecture is verified for wider class of abelian varieties of Fermat type. [A1], [A3]
(1)整点与Mordell-Weil格作为Mordell-Weil格的一个应用,我们发展了一种研究函数域中整点的方法。在某些有利的情况下,该方法为求椭圆曲线的所有整点提供了一种非常有效的方法。(2)K_3曲面与球填充利用某些椭圆K_3曲面的Mordell-Weil格,我们得到了高维(特别是16,17,18维)情况下具有较大填充密度的格球填充。(3)平面四次线的不变理论与Mordell-Weil格我们建立了经典的平面四次线的不变理论(亏格为三条曲线的模)与E_7型Weyl群(有限群)的不变理论之间的密切关系。[S4](4)由椭圆模曲面产生的一些码。我们构造了模N剩余环上的一个线性码,它与N阶椭圆模曲面相联系。如果N是一个素数,这个在N个元素的域上的线性码有一个显著的性质,即每个非零码字都有一个常数伯努利范数。[S2](5)椭圆曲线的Tate-Shafarevich群Aoki证明了Tate-Shafarevich群的3-部分可以是任意大的。[A2](6)交换簇的Hodge猜想从组合的观点研究了Fermat曲线的Jacobi簇上的Hodge圈。由此,Hodge猜想在更广的一类Fermat型交换簇上得到了验证。[A1]、[A3]

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
青木 昇(Noboru Aoki): "Some remarks on the Hodge conjecture for abelian varieties of Fermat type"Comment. Math. Univ. Sancti Pauli. 49. 177-194 (2000)
Noboru Aoki:“关于费马类型的霍奇猜想的一些评论”Math. 49. 177-194 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
青木 昇(Noboru Aoki): "On the Tate-Shafarevich groups of semistable elliptic curves"Acta Arithmetica(印刷中).
Noboru Aoki:“论半稳定椭圆曲线的 Tate-Shafarevich 群”《算术学报》(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shioda, Tetsuji: "[S1] Integral points and Mordell-Weil lattices"A Panorama in Number Theory, Cambridge Univ. Press. 185-193 (2002)
Shioda、Tetsuji:“[S1] 积分点和 Mordell-Weil 格子”数论全景,剑桥大学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
塩田 徹治(Tetsuji Shioda): "A note on K3 surfaces and sphere packings"Proc. Japan Acad.. 76A. 68-72 (2000)
Tetsuji Shioda:“关于 K3 表面和球体填料的说明”Proc. 76A (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
青木 昇(Noboru Aoki): "Hodge cycles on CM abelian varieties of Fermat type"Comment. Math. Univ. Sancti Pauli. 51. 99-129 (2002)
Noboru Aoki:“费马类型的 CM 阿贝尔簇”评论 Univ。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIODA Tetsuji其他文献

SHIODA Tetsuji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIODA Tetsuji', 18)}}的其他基金

Prospects for Mordell-Weil Lattices andAlgebraic Surfaces
Mordell-Weil 格子和代数曲面的展望
  • 批准号:
    20540051
  • 财政年份:
    2008
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mordell-Weil Lattices and Cycles on Algebraic Surfaces
代数曲面上的 Mordell-Weil 格子和圈
  • 批准号:
    17540044
  • 财政年份:
    2005
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Shafarevich Correspondence and Mordell-Weil Lattices
沙法列维奇对应和 Mordell-Weil 格子
  • 批准号:
    15540048
  • 财政年份:
    2003
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MORDELL-WEIL LATTICES OF JACOBIAN VARIETIES
雅可比簇的莫德尔-韦尔格子
  • 批准号:
    09640073
  • 财政年份:
    1997
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Continuing Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
  • 批准号:
    2340564
  • 财政年份:
    2024
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Continuing Grant
Iwasawa theory of elliptic curves and the Birch--Swinnerton-Dyer conjecture
岩泽椭圆曲线理论和 Birch--Swinnerton-Dyer 猜想
  • 批准号:
    2302064
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
The Arithmetics of Elliptic Curves
椭圆曲线的算术
  • 批准号:
    572925-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.43万
  • 项目类别:
    University Undergraduate Student Research Awards
Variation of the rank in families of elliptic curves
椭圆曲线族中等级的变化
  • 批准号:
    RGPIN-2021-03692
  • 财政年份:
    2022
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
Modularity of elliptic curves over imaginary quadratic fields
虚二次域上椭圆曲线的模性
  • 批准号:
    565670-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Variation of the rank in families of elliptic curves
椭圆曲线族中等级的变化
  • 批准号:
    RGPIN-2021-03692
  • 财政年份:
    2021
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic Curves, p-adic Deformations, and Iwasawa Theory
椭圆曲线、p 进变形和岩泽理论
  • 批准号:
    2101458
  • 财政年份:
    2021
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Continuing Grant
Applications of Nagao's conjecture to elliptic curves
长尾猜想在椭圆曲线上的应用
  • 批准号:
    562249-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.43万
  • 项目类别:
    University Undergraduate Student Research Awards
Points on Elliptic Curves
椭圆曲线上的点
  • 批准号:
    562642-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.43万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了