Research on Martin and Kuramochi boundaries of covering surfaces

覆盖表面的Martin和Kuramochi边界研究

基本信息

  • 批准号:
    12640193
  • 负责人:
  • 金额:
    $ 1.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

1. (1) For a Riemann surface R and a finitely sheeted unlimited covering surface W of R, by Martin boundaries of R and W, Masaoka obtained jointly with Segawa a necessary and sufficient condition for the spaces of bounded harmonic functions on R and W being same.(2) For a Riemann surface R, a finitely sheeted unlimited covering surface W of R and a minimal Kuramochi boundary point p of R, by minimal fine topology, Masaoka obtained jointly with Segawa a charcterization of the number of minimal Kuramochi boundary points of W over p.(3) For a Riemann surface R, a finitely sheeted unlimited covering surface W of R and a minimal Martin boundary point p of R, by minimal fine topology, Masaoka obtained jointly with Segawa a characterization of the number of minimal Martin boundary points of W over p.(4) For a Riemann surface R and a finitely sheeted unlimited covering surface W of R, by Kuramochi boundaries of R and W, Masaoka obtained a necessary and sufficient condition for the spaces of harmonic functions with finite Dirichlet integrals on R and W being same.2. Ishida showed that, for a Denjoy domain G in C with n boundary components (n 【greater than or equal】 3) and a Denjoy subdomain G' of G with n boundary components such that G' is mapped conformally into G by a map f, G / f(G') has no interior points.3. Tsuji studied the Cauchy problem for nonlinear hyperbolic equations.4. Segawa studied the type problem for a infinitely sheeted simply connected unlimited covering surface of the Riemann sphere.5. (1) Nishio gave a mean value property for solutions of parabolic equation of order α.(2) Nishio showed that, under an appropriate condition, for the Martin's and Loeb's compactifications of a harmonic space in the sense of Brelot, their harmonic boundaries coincide.
1. (1)对于Riemann曲面R和R的有限片无限覆盖曲面W, Masaoka与Segawa共同利用R和W的Martin边界,得到了R和W上有界调和函数空间相同的充分必要条件。(2)对于黎曼曲面R,有限片无限覆盖曲面W (R)和R的极小Kuramochi边界点p (R), Masaoka与Segawa通过极小精细拓扑得到了W / p上极小Kuramochi边界点的个数。(3)对于黎曼曲面R,有限片无限覆盖曲面W (R)和极小Martin边界点p (R),通过极小精细拓扑,(4)对于一个Riemann曲面R和一个R的有限片无限覆盖曲面W,利用R和W的Kuramochi边界,Masaoka得到了在R和W上具有有限Dirichlet积分的调和函数空间相等的一个充分必要条件。石田证明,对于C中具有n个边界分量的Denjoy域G和具有n个边界分量的G的Denjoy子域G‘,使得G’被映射f保角映射到G中,G / f(G')没有内点。Tsuji研究了非线性双曲方程的Cauchy问题。4 . Segawa研究了黎曼球的无限片单连通无限覆盖曲面的类型问题。(1) Nishio给出了一类α阶抛物方程解的均值性质。(2) Nishio证明了在一定条件下,对于Brelot意义上的调和空间的Martin’s紧化和Loeb’s紧化,它们的调和边界重合。

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shigeo Segawa and Mitsuru Nakai: "Type of covering sufaces"RIMS kokyurokru. (to appear).
Shigeo Sekawa 和 Mitsuru Nakai:“覆盖表面的类型”RIMS kokyurokru。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mikio Tsuji: "Integration and singularities of solutions for nonlinear second order hyperbolic equations"Differential operators and mathematical physids (edited by V. Ancona and J. Vaillant, Kluwer Academic Publishers). (to appear).
Mikio Tsuji:“非线性二阶双曲方程解的积分和奇点”微分算子和数学物理(由 V. Ancona 和 J. Vaillant 编辑,Kluwer 学术出版社)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Nishio and N.Suzuki: "A characterization of strip domains by a mean value property for the parabolic operator of order α"New Nealand J.Math.. 29. 47-54 (2000)
M.Nishio 和 N.Suzuki:“通过 α 阶抛物线算子的均值属性来表征带状域”New Nealand J.Math.. 29. 47-54 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Naondo Jin, Hiroaki Masaoka, Shigeo Segawa: "Kuramochi boundary of unlimited covering surfaces"Analysis. 20. 163-190 (2000)
Naondo Jin、Hiroaki Masaoka、Shigeo Sekawa:“无限覆盖表面的仓持边界”分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mikio Tsuji: "Integration and singularities of solutions for nonlinear second order hyperbolic equations"Differential operators and mathematical physics (edited by V.Ancona and J.Vaillant, Kluwer Academic Publishers). (to appear).
Mikio Tsuji:《非线性二阶双曲方程解的积分和奇异性》微分算子和数学物理(由 V.Ancona 和 J.Vaillant 编辑,Kluwer 学术出版社)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MASAOKA Hiroaki其他文献

MASAOKA Hiroaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MASAOKA Hiroaki', 18)}}的其他基金

The study on the ideal boundary of Riemann surfaces
黎曼曲面理想边界的研究
  • 批准号:
    18540194
  • 财政年份:
    2006
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ideal boundary of covering surfaces
覆盖表面的理想边界
  • 批准号:
    14540192
  • 财政年份:
    2002
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Martin and Kuranochi boundaries of covering surfaces
覆盖面Martin和Kuranochi边界研究
  • 批准号:
    10640192
  • 财政年份:
    1998
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了