Ideal boundary of covering surfaces

覆盖表面的理想边界

基本信息

  • 批准号:
    14540192
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

1.(1)For a Riemann surface Rand a finitely sheeted unlimited covering surface W of R, by Martin boundaries (resp. Kuramochi boundaries) of Rand W Masaoka obtained jointly with Segawa and Jin necessary and sufficient conditions for the spaces of bounded harmonic functions (resp. harmonic functions with finite Dirichlet integrals) on Rand W being same, and in case R is the unit disc we obtained more results than that in the general case.(2)In case p = 2,3, for -sheeted unlimited covering surfaces Rand R of C\{0} which are quasiconformally equivalent to each other, Masaoka showed jointly with Segawa that the harmonic dimension ( the cardinal number of the minimal Martin boundary) of R is equal to that of R'.(3)For Heins' covering surfaces R and R' of C\{0} which are quasiconformally equivalent toeach other, Masaoka showed that the harmonic dimension of R is equal to that of R'2.For a Denjoy domain Gin C with ρ boundary components (ρ≧3) and a Denjoy subdomain G'of G with ρ boundary components, Ishida showed that, if G' is mapped conformally into G by a mapping f preserving each boundary component, f is the identity mapping.3.Tsuji studied the Cauchy problem for nonlinear second order hyperbolic equations.4.Segawa studied the type problem for a infinitely sheeted simply connected unlimited covering surface of C.5.Nishio obtained some characterizations for Caloric morphism brtween manifolds.
1.(1)对于Riemann曲面兰德和R的无限复盖曲面W,分别用Martin边界(Kuramochi边界)的兰德W Masaoka与Segawa和Jin共同获得的有界调和函数空间的充分必要条件(分别为)。在兰德W上的有限Dirichlet积分的调和函数)相同的情况下,得到了比一般情况更多的结果。(2)In在p = 2,3的情形下,对于C {0}的拟共形等价的-片无限覆盖曲面兰德R,Masaoka与Segawa共同证明了R的调和维数(最小Martin边界的基数)等于R '的调和维数.(3)Masaoka证明了C的Heins覆盖曲面R和R'的调和维数与R' 2的调和维数相等。对于C中具有ρ边界分量的Denjoy域G(ρ = 3)和G中具有ρ边界分量的Denjoy子域G ',Ishida证明了,如果G'由一个保各边界分量的映射f保形映射到G中,3.Tsuji研究了二阶非线性双曲型方程的Cauchy问题,4.Segawa研究了C的无限单连通覆盖曲面的型问题,5.Nishio得到了流形之间Caloric态射的一些特征.

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hiroaki Masaoka, Naondo Jin: "minimal Kuramochi boundary of finitely sheeted unlimited covering surfaces"RIMS kokyuroku. Vol.1293. 78-83 (2002)
Hiroaki Masaoka、Naondo Jin:“有限片状无限覆盖表面的最小 Kuramochi 边界”RIMS kokyuroku。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hisashi Ishida, Fumio Maitani: "Conformal imbeddings of Denjoy domains II"Acta Human.Sci.Univ.Sangio Kyotiensis. vol.31. 1-5 (2002)
Hisashi Ishida、Fumio Maitani:“Denjoy 域 II 的保形嵌入”Acta Human.Sci.Univ.Sangio Kyotiensis。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroaki Masaoka, Shigeo Segawa: "Harmonic functions on finitely sheeted unlimited covering"J.Math.Soc.Japan. 55. 323-334 (2003)
Hiroaki Masaoka、Shigeo Sekawa:“有限片无限覆盖上的调和函数”J.Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Naondo Jin, Hiroaki Masaoka: "Kuramochi boundary and harmonic functions with finite Dirichlet integrals on unlimited covering surfaces"Osaka J.Math.. vol.41. 1-17 (2004)
Naondo Jin、Hiroaki Masaoka:“Kuramochi 边界和调和函数以及无限覆盖表面上的有限 Dirichlet 积分”Osaka J.Math.. vol.41。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Jin, H.Masaoka: "Kuramochi boundary and harmonic functions with finite Dirichlet integrals on unlimited covering surfaces"Osaka J.Math.. 141. (2004)
N.Jin,H.Masaoka:“Kuramochi 边界和调和函数,在无限覆盖表面上具有有限 Dirichlet 积分”Osaka J.Math.. 141. (2004)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MASAOKA Hiroaki其他文献

MASAOKA Hiroaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MASAOKA Hiroaki', 18)}}的其他基金

The study on the ideal boundary of Riemann surfaces
黎曼曲面理想边界的研究
  • 批准号:
    18540194
  • 财政年份:
    2006
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Martin and Kuramochi boundaries of covering surfaces
覆盖表面的Martin和Kuramochi边界研究
  • 批准号:
    12640193
  • 财政年份:
    2000
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Martin and Kuranochi boundaries of covering surfaces
覆盖面Martin和Kuranochi边界研究
  • 批准号:
    10640192
  • 财政年份:
    1998
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了