Analytical Study on the State-Evolution Operator and Nonequilibrium States for Nonlinear Dynamical Systems including Chaotic Systems
包括混沌系统在内的非线性动力系统的状态演化算子和非平衡状态的解析研究
基本信息
- 批准号:12640375
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have mainly investigated nonequilibrium states for nonlinear dynamical systems and, infinitely extended quantum systems. The results are summarized as follows :(1)STATISTICAL BEHAVIOR OF NONLINEAR DYNAMICAL SYSTEMS (a)Hyperbolic Systems : For nonequilibrium steady states of an infinitely extended hyperbolic system, called a multibaker map, the relative entropy production and a coarse-grained entropy production of Gaspard et al. are is compared and are shown to be consistent with each other and with thermodynamics in an appropriate scaling limit. (b)Nonhyperbolic Systems : For a piecewise linear intermittent map on the unit interval, the polynomial decay of correlation is shown to be characterized by a continuous spectrum of the Frobenius-Perron operator. On the other hand, for a spatially extended piecewise linear intermittent map exhibiting super diffusion, eigenvalues near 1 of the Frobenius-Perron operator are found to control the anomalous diffusion. (2)NONEQUILIBRIUM STATES OF INFINITELY EXTENDED QUANTUM SYSTEMS (a) C* Dynamical Systems : Applying the C* algebraic method to a 1-d lattice conductor, nonequilibrium steady states are rigorously constructed and the validity of Landauer formula & the positivity of the relative entropy production are shown. On the other hand, for asymptotically abelian C* dynamical systems, we have shown the existence of nonequilibrium steady states, the validity of Gallavotti-Cohen fluctuation theorem and the equivalence with the Zubarev-MacLennan ensembles, (b)Decoherence Control : In open systems, the interaction with environment reduces quantum coherence (decoherence). For a three-level system coupled with an environmental field, the dynamical decoupling control and quantum Zeno control are investigated and non-ideal controls are shown to enhance decoherence.
我们主要研究了非线性动力学系统和无限扩展量子系统的非平衡态。(1)非线性双曲系统的统计行为(a)双曲系统:对于一个无限扩展的双曲系统的非平衡定态,即多面包师映射,比较了Gaspard等人的相对熵产生和粗粒熵产生,并证明了它们在适当的标度极限下是一致的,而且与热力学是一致的。(B)非双曲系统:对于单位区间上的分段线性间歇映射,证明了相关性的多项式衰减是由Frobenius-Perron算子的连续谱所表征的。另一方面,对于空间扩展的分段线性间歇映射表现出超扩散,Frobenius-Perron算子的特征值接近1被发现控制异常扩散。(2)无限扩展量子系统的非平衡态(a)C ~* 动力学系统:将C ~* 代数方法应用于一维晶格导体,严格构造了非平衡定态,证明了Landauer公式的正确性和相对熵产生的正性。另一方面,对于渐近阿贝尔C* 动力系统,我们证明了非平衡定态的存在性,Gallavotti-Cohen涨落定理的有效性以及与Zubarev MacLennan系综的等价性。(B)退相干控制:在开放系统中,与环境的相互作用降低了量子相干(退相干)。针对一个与环境场耦合的三能级系统,研究了动态解耦控制和量子Zeno控制,并证明了非理想控制可以增强退相干。
项目成果
期刊论文数量(79)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Okada, A.Shudo, T.Harayama, S.Tasaki: "Can one determine the shape of a quantum billiard table through the eigenenergies and resonances?"Progress of Theoretical Physics, Supplement. 150. 397-400 (2003)
Y.Okada、A.Shudo、T.Harayama、S.Tasaki:“可以通过本征能和共振确定量子台球桌的形状吗?”《理论物理进展》,增刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Tasaki: "Nonequilibrium Stationary States of Noninteracting Electrons in a One-dimensional Lattice"Chaos, Solitons and Fractals. 12. 2657-2674 (2001)
S.Tasaki:“一维晶格中非相互作用电子的非平衡稳态”混沌、孤子和分形。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Tasaki, P.Gaspard: "Entropy Production and Transports in a Conservative Multibaker Map with Energy"Journal of Statistical Physics. 101. 125-144 (2000)
S.Tasaki、P.Gaspard:“保守 Multibaker 能量图中的熵产生和传输”统计物理学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
田崎秀一: "カオスから見た時間の矢"講談社ブルーバックス. 254 (2000)
田崎修一:“从混乱中看到的时间之箭”讲谈社 Bluebacks 254 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Tasaki, T.Matsui: "Fluctuation Theorem, Nonequilibrium Steady States and MacLennan-Zubarev Ensembles of a Class of Large Quantum Systems"Fundamental Aspects of Quantum Physics (eds. L.Accardi, S.Tasaki) (World Scientific). 100-119 (2003)
S.Tasaki、T.Matsui:“一类大型量子系统的涨落定理、非平衡稳态和 MacLennan-Zubarev 系综”量子物理学的基本方面(L.Accardi、S.Tasaki 编辑)(世界科学出版社)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TASAKI Shuichi其他文献
TASAKI Shuichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TASAKI Shuichi', 18)}}的其他基金
Analytical Research on the Eigenvalue Problem of the Evolution Operator of Distribution Functions for Nonlinear Systems exhibiting Chaos and Bifurcation
混沌分岔非线性系统分布函数演化算子特征值问题的解析研究
- 批准号:
09640473 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
- 批准号:
22KJ2815 - 财政年份:2023
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Study of control theory based on a reduction of nonlinear dynamical systems
基于非线性动力系统约化的控制理论研究
- 批准号:
22H03663 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Control-Theoretic Reinforcement Learning for Nonlinear Dynamical Systems
非线性动力系统的控制理论强化学习
- 批准号:
545829-2020 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Postgraduate Scholarships - Doctoral
Estimation and Control of Nonlinear Dynamical Systems
非线性动力系统的估计和控制
- 批准号:
RGPIN-2020-04796 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Estimation and Control of Nonlinear Dynamical Systems
非线性动力系统的估计和控制
- 批准号:
RGPIN-2020-04796 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Control-Theoretic Reinforcement Learning for Nonlinear Dynamical Systems
非线性动力系统的控制理论强化学习
- 批准号:
545829-2020 - 财政年份:2021
- 资助金额:
$ 2.3万 - 项目类别:
Postgraduate Scholarships - Doctoral
Control-Theoretic Reinforcement Learning for Nonlinear Dynamical Systems
非线性动力系统的控制理论强化学习
- 批准号:
545829-2020 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Postgraduate Scholarships - Doctoral
Estimation and Control of Nonlinear Dynamical Systems
非线性动力系统的估计和控制
- 批准号:
RGPIN-2020-04796 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Discovery Grants Program - Individual
Adaptive Model Order Reduction for Large-scale Nonlinear Dynamical Systems and Its Application
大规模非线性动力系统自适应模型降阶及其应用
- 批准号:
19K12004 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Dynamical Systems
非线性动力系统
- 批准号:
542529-2019 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's














{{item.name}}会员




