A study on the construction of a framework of control theory based on organic combination of algebraic and analytic methods
代数与解析方法有机结合的控制理论框架构建研究
基本信息
- 批准号:12650444
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims at constructing a new framework for design and analysis of control systems in such a way that algebraic and analytic methods are combined in an organic fashion. Here, an algebraic method includes such approaches involving eigenvalue/eigenvector analysis of matrices. spectral analysis of operators and determinant theory of matrices and operators. On the other hand, an analytic method includes such approaches involving functional analysis, operator theory and complex function theory. In this research design and analysis of sampled-data systems as well as analysis of linear continuous-time periodic systems are particularly focused on.In the study of sampled-data systems, efficient and fairly accurate upper and lower bounds for the frequency response gain are derived, and a bisection method to compute the exact frequency response gain to any degree of accuracy from those upper and lower bounds is also established, including associated computer programs. Also, positive-re … More alness and Nyquist stability criterion are studied, and spectral properties of operators associated with sampled-data systems are clarified.In the study of linear continuous-time periodic systems, we first dealt with the associated frequency response operator, which plays a key role in the study of linear continuous-time periodic systems, and clarified the conditions that should be satisfied by the system so that the associated frequency response operator can be defined in a rigorous fashion. Furthermore, properties of the frequency response operators are studied thoroughly, by which a solid basis has been established for studies to follow. These results are extended to enable us to analyze stability of linear continuous-time periodic systems through an infinite-dimensional algebraic equation which we call a harmonic Lyapunov equation. Effectiveness of the analysis using this equation is shown, and it is also shown that the H2 and H-infinity performance analysis can be carried out through what we call skew truncation of infinite-dimensional matrices. Convergence properties regarding this truncation are also established. Less
本研究旨在构建一个新的控制系统设计和分析框架,将代数方法和解析方法有机地结合起来。这里,代数方法包括涉及矩阵的特征值/特征向量分析的方法。算子的谱分析以及矩阵和算子的行列式理论。另一方面,解析方法包括泛函分析、算子理论和复变函数理论等方法。在本研究中,特别关注采样数据系统的设计和分析以及线性连续时间周期系统的分析。在采样数据系统的研究中,推导了有效且相当准确的频率响应增益的上限和下限,并建立了从这些上限和下限计算任意精度的精确频率响应增益的二分法,包括相关的计算机程序。还研究了正响应和奈奎斯特稳定性判据,明确了与采样数据系统相关的算子的谱特性。在线性连续时间周期系统的研究中,我们首先讨论了相关频率响应算子,它在线性连续时间周期系统的研究中起着关键作用,并明确了系统应满足的条件,以便可以严格地定义相关频率响应算子。此外,还对频率响应算子的性质进行了深入的研究,为后续的研究奠定了坚实的基础。这些结果经过扩展,使我们能够通过无限维代数方程(我们称之为调和李亚普诺夫方程)来分析线性连续时间周期系统的稳定性。显示了使用该方程进行分析的有效性,并且还表明可以通过我们所说的无限维矩阵的斜截断来进行 H2 和 H-无穷大性能分析。还建立了关于该截断的收敛性质。较少的
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.Zhou, T.Hagiwara: "H2 and H∞ Norm Computation of Linear Continuous-Time Periodic Systems Via the Skev Analysis of Frequency Response Operators"Automatica. 38・8. 1381-1387 (2002)
J.Zhou,T.Hagiwara:“通过频率响应算子的 Skev 分析进行线性连续时间周期系统的 H2 和 H∞ 范数计算”Automatica 1381-1387。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ito, T.Hagiwara, H.Maeda, M.Araki: "Time-Sharing Multirate Sample-Hold Controllers and Their Application to Reliable Stabilization"Dynamics of Continuous, Discrete and Impulsive Systems Series B : Applications & Algorithms. 8・4. 445-463 (2001)
Y.Ito、T.Hagiwara、H.Maeda、M.Araki:“分时多速率采样保持控制器及其在可靠稳定中的应用”连续、离散和脉冲系统动力学 B 系列:应用与算法 8・4。 .445-463 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Hagiwara, M.Suyama, M.Araki: "Upper and Lower Bounds of the Frequency Response Gain of Sampled-Data Systems"Automatica. 37・9. 1363-1370 (2001)
T.Hagiwara、M.Suyama、M.Araki:“采样数据系统的频率响应增益的上限和下限”Automatica 37・9(2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Hagiwara: "Spectral Analysis and Singular Value Computations of the Noncompact Frequency Response and Compression Operators in Sampled-Data Systems"SIAM Journal on Control and Optimization. Vol.41, No.5. 1350-1371 (2002)
T. Hagiwara:“采样数据系统中非紧频率响应和压缩算子的频谱分析和奇异值计算”SIAM 控制与优化杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J. Zhou, T. Hagiwara, M. Araki: "Stability Analysis of Confinuous-Time Periodic Systems via the Harmonic Analysis"IEEE Transactions on Automatic Control. Vol.47, No.2. 292-298 (2002)
J. Zhou、T. Hagiwara、M. Araki:“通过谐波分析进行连续时间周期系统的稳定性分析”IEEE 自动控制汇刊。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAGIWARA Tomomichi其他文献
Analysis of the <i>l<sub>q</sub></i>/<i>l<sub>p</sub></i> Hankel Norms of Discrete-time Positive Systems
离散时间正系统的<i>l<sub>q</sub></i>/<i>l<sub>p</sub></i> Hankel范数分析
- DOI:
10.9746/sicetr.57.128 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
SHIGA Ryosuke;KATO Teruki;EBIHARA Yoshio;HAGIWARA Tomomichi - 通讯作者:
HAGIWARA Tomomichi
Verification of the Scaling Effect by Stochastic Scaling Elements
随机缩放元素的缩放效果验证
- DOI:
10.9746/sicetr.56.421 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
NAGIRA Yuji;HOSOE Yohei;HAGIWARA Tomomichi - 通讯作者:
HAGIWARA Tomomichi
HAGIWARA Tomomichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAGIWARA Tomomichi', 18)}}的其他基金
Operator-Theoretic Study on the Synthesis and Analysis of Control Systems via Fast-Lifting and Its Algebraic Extension
快速提升控制系统综合分析及其代数推广算子理论研究
- 批准号:
21560461 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Advanced Development and Systematization of Analysis and Design Methods for Control Systems via an Operator-Theoretic Approach
基于算子理论方法的控制系统分析设计方法的高级开发和系统化研究
- 批准号:
18560432 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and Application of control theory based on organic combination of algebraic and analytic methods
代数与解析方法有机结合的控制理论的发展与应用
- 批准号:
15560375 - 财政年份:2003
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Stabilizability Analysis of Linear Periodic Systems
线性周期系统的稳定性分析
- 批准号:
21760325 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




