Optimization of transdermal and transmucosal drug delivery systems utilizing artificial neural networks

利用人工神经网络优化透皮和跨粘膜给药系统

基本信息

  • 批准号:
    12672096
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

A pharmaceutical formulation is composed of several formulation factors and process variables. Several responses relating to the effectiveness, usefulness, stability, as well as safety must be optimized simultaneously. Consequently, expertise and experience are required to design acceptable pharmaceutical formulations. A response surface method (RSM) has widely been used for selecting acceptable pharmaceutical formulations. However, prediction of pharmaceutical responses based on the second-order polynomial equation commonly used in RSM, is often limited to low levels, resulting in poor estimations of optimal formulations. A multi-objective simultaneous optimization method incorporating an artificial neural network (ANN) was developed. The method was applied to the optimization of ketoprofen hydrogel formulations including 1-O-ethyl-3-n-butylcyclohexanol as absorption enhancer. ANNs are being increasingly used in pharmaceutical research to predict the nonlinear relationship between causal factors and response variables. The observed results of several characteristics in the optimum formulations coincided well with the predictions, suggesting superior function of the ANN approach.
药物配方由多个配方因素和工艺变量组成。必须同时优化与有效性、有用性、稳定性和安全性有关的几个反应。因此,需要专业知识和经验来设计可接受的药物配方。响应面方法(RSM)已被广泛用于选择可接受的药物配方。然而,基于RSM中常用的二阶多项式方程对药物反应的预测往往局限于低水平,导致对最优配方的估计不佳。提出了一种结合人工神经网络(ANN)的多目标同时优化方法。将该方法应用于以1-O-乙基-3-正丁基环己醇为吸收促进剂的酮洛芬水凝胶处方的优化。人工神经网络在药物研究中越来越多地被用来预测因果因素和反应变量之间的非线性关系。最优配方中几个特性的观测结果与预测结果吻合较好,表明人工神经网络方法具有较好的性能。

项目成果

期刊论文数量(91)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Morishita: "Elucidation of the mechanism of incorporation of insulin in controlled release systems based on complexation polymers"J.Controlled Rel.. 81. 25-32 (2002)
M.Morishita:“基于络合聚合物的控释系统中胰岛素掺入机制的阐明”J.Controlled Rel.. 81. 25-32 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
小川法子: "花粉症治療を目的としたflunisolide含有持続性鼻腔用軟膏の開発"薬剤学. 63. 161-168 (2002)
Noriko Okawa:“开发含有氟尼缩松的长效鼻用软膏,用于治疗花粉症”药理学 63. 161-168 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Nakamura: "Regional intestinal absorption of FITC-dextran 4,400 with nanoparticles based on β-sitosterol β-D-glucoside in rats"J.Pharm.Sci.. 92. 311-318 (2003)
K. Nakamura:“基于 β-谷甾醇 β-D-葡萄糖苷的纳米颗粒对 FITC-葡聚糖 4,400 在大鼠中的区域肠道吸收”J.Pharm.Sci.. 92. 311-318 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Takayama, A. Morva, M. Fujikawa, Y. Hattori, Y. Obata and T. Nagai: "Formula optimization of theophylline tablet based on artificial neural networks"J. Controlled Rel.. 68. 145-186 (2000)
K. Takayama、A. Morva、M. Fujikawa、Y. Hattori、Y. Obata 和 T. Nagai:“基于人工神经网络的茶碱片配方优化”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J. P. Wang, Y. Maitani, K. Takayama and T. Nagai: "In vivo evaluation of doxorubicin carried with long circulating and remote loading proliposome"Int. J. Pharm.. 203. 61-69 (2000)
J. P. Wang、Y. Maitani、K. Takayama 和 T. Nagai:“长循环和远程装载前脂质体携带的阿霉素的体内评估”Int。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAYAMA Kozo其他文献

TAKAYAMA Kozo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAYAMA Kozo', 18)}}的其他基金

Creaton of tablet database and visulalization of its internal structure
平板电脑数据库的创建及其内部结构可视化
  • 批准号:
    23590053
  • 财政年份:
    2011
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of in silico prediction technique for pharmaceutical design and optimization
药物设计和优化的计算机预测技术的发展
  • 批准号:
    19590045
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimization of transdermal and transmucosal drug delivery systems utilizing thin-plate spline interpolation
利用薄板样条插值优化透皮和跨粘膜给药系统
  • 批准号:
    16590035
  • 财政年份:
    2004
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of percutaneous absorption promoters by means of solid fractal analysis of skin stratum corneum
皮肤角质层固体分形分析评价经皮吸收促进剂
  • 批准号:
    07672329
  • 财政年份:
    1995
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
  • 批准号:
    10680206
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
Developing artificial neural network tools for cognitive modeling
开发用于认知建模的人工神经网络工具
  • 批准号:
    10641215
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
Engineering molecular neurons for artificial neural network computing
用于人工神经网络计算的工程分子神经元
  • 批准号:
    572631-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    University Undergraduate Student Research Awards
An artificial neural network model of the exploration-exploitation trade off
探索-利用权衡的人工神经网络模型
  • 批准号:
    559572-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
I-Corps: Analog artificial neural network (ANN) structure with tunable parameters for identification of acoustic events
I-Corps:具有可调参数的模拟人工神经网络 (ANN) 结构,用于识别声学事件
  • 批准号:
    2050117
  • 财政年份:
    2021
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
EAGER: CAS-Climate: AI-driven Probabilistic Technique, Quantile Regression based Artificial Neural Network Model, for Bias Correction and Downscaling of CMIP6 Projections
EAGER:CAS-Climate:人工智能驱动的概率技术、基于分位数回归的人工神经网络模型,用于 CMIP6 投影的偏差校正和缩小
  • 批准号:
    2151651
  • 财政年份:
    2021
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
An artificial neural network model of the exploration-exploitation trade off
探索-利用权衡的人工神经网络模型
  • 批准号:
    559572-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Nonlinear Eddy Viscosity Modeling with Artificial Neural Network for Sharp-Edge Bluff Bodies
利用人工神经网络对锐边钝体进行非线性涡流粘度建模
  • 批准号:
    566135-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
CAREER:Bionic Eye: Heterogeneous Integration of Hemispherical Image Sensor with Artificial Neural Network
职业:仿生眼:半球图像传感器与人工神经网络的异构集成
  • 批准号:
    1942868
  • 财政年份:
    2020
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Continuing Grant
Prediction of gelation by artificial neural network using Hansen solubility parameters
使用汉森溶解度参数通过人工神经网络预测凝胶化
  • 批准号:
    20K22471
  • 财政年份:
    2020
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了