Development of Extendable CAE Foundation Software by Free-Mesh Method

采用自由网格法开发可扩展的CAE基础软件

基本信息

  • 批准号:
    13355005
  • 负责人:
  • 金额:
    $ 18.39万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

In this research, we developed a CAE foundation software which can generate domain decomposition parallel analysis programs based on the free-mesh method. This software was opened to public as a flee software. The functions of the software are three dimensional structural analysis, and pre-and post processor, including plug-ins to connect with GiD developed at the International Center for Numerical Methods in Engineering, Barcelona, Spain. The research results can be summarized as follows :-The software was designed by using the Design Patterns to attain easy extendability of functions.-High precision 4-node tetrahedral element was developed and applied to 3-dimensional flow analysis of fresh concrete. A3-dimensional crack propagation program was also developed and applied to 2 phase material with bone material and mortar.-A CAE system which can analyze 3-dimensional complicated shaped body seamlessly from CAD models to calculated results was developed and applied to crack propagation problem with mixed mode loading.-A fast parallelized local mesh generation algorithm was developed by using Quasi-constrained Delaunay triangulation method based on the Gift Wrapping Method. This algorithm enabled to generate numerical models of structures having internal cracks.-A-3-dimensional free-mesh analysis program of transient heat-transfer problems was developed, as an application to a dynamic problem.-A 2-dimensional free-mesh analysis program of crack propagation problem was developed and the results were compared and verified with those of finite element analyses.
在本研究中,我们开发了一个CAE基础软件,可以生成基于自由网格法的区域分解并行分析程序。该软件作为一个远程软件向公众开放。该软件的功能是三维结构分析,前处理器和后处理器,包括插件连接GiD开发的国际中心数值方法在工程,西班牙巴塞罗那。研究结果可归纳如下:-本软件采用设计模式进行设计,使功能易于扩充。提出了一种高精度四面体单元,并将其应用于新拌混凝土的三维流动分析。本文还编制了一个三维裂纹扩展程序,并应用于含骨材料和砂浆的两相材料。开发了一个能够对三维复杂形体从CAD模型到计算结果进行无缝分析的CAE系统,并将其应用于复合型载荷下的裂纹扩展问题。提出了一种基于Gift Wrapping方法的准约束Delaunay三角剖分方法的局部网格快速并行生成算法。该算法能够生成具有内部裂纹的结构的数值模型。本文编制了一个三维自由网格瞬态传热分析程序,并将其应用于一个动态问题。编制了裂纹扩展问题的二维自由网格分析程序,并与有限元分析结果进行了比较和验证。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Fujisawa, G.Yagawa: "Node-based finite element method for large-scale adaptive fluid analysis in parallel environments"Int.Conf.Supercomputing in Nuclear Applications. 96 (2003)
T.Fujisawa、G.Yakawa:“并行环境中大规模自适应流体分析的基于节点的有限元方法”Int.Conf.核应用中的超级计算。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Fujisawa, Inaba, Yagawa: "Parallel computing of high-speed compressible flows using a node-based finite-element method"Int.J. for Numerical Methods in Engineering. 58. 481-511 (2003)
Fujisawa、Inaba、Yakawa:“使用基于节点的有限元方法并行计算高速可压缩流”Int.J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
今里, 酒井: "CADデータを用いたフリーメッシュ法の3次元問題への適用"日本計算工学会論文集2002年号. 4. 113-122 (2002)
Imazato, Sakai:“使用 CAD 数据的自由网格方法在三维问题中的应用”,日本计算工程学会会议记录,2002 年第 4 期。113-122(2002 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
松原, 伊良波, 富山, 矢川: "回転自由度を有する3次元要素を用いたフリーメッシュ法"コンクリート工学年次論文集. 25-2. 67-72 (2003)
Matsubara、Iranami、Toyama、Yakawa:“使用具有旋转自由度的三维单元的自由网格方法”混凝土工程年度论文集 25-2(2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Matsubara, Iraha, Tomiyama, Yagawa: "Three-Dimensional Element with Rotational Degree of Freedom for Free-Mesh Method"Trans.Japan Concrete Institute. 25-2. 67-72 (2003)
Matsubara、Iraha、Tomiyama、Yakawa:“自由网格法的具有旋转自由度的三维单元”Trans.Japan Concrete Institute。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KANTO Yasuhiro其他文献

KANTO Yasuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
  • 批准号:
    23K04012
  • 财政年份:
    2023
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
  • 批准号:
    573136-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 18.39万
  • 项目类别:
    University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
  • 批准号:
    2795756
  • 财政年份:
    2022
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
  • 批准号:
    22K04278
  • 财政年份:
    2022
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
  • 批准号:
    2207164
  • 财政年份:
    2022
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Continuing Grant
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
  • 批准号:
    2009366
  • 财政年份:
    2020
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
  • 批准号:
    2012285
  • 财政年份:
    2020
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
  • 批准号:
    20K10160
  • 财政年份:
    2020
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
  • 批准号:
    19K15078
  • 财政年份:
    2019
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
  • 批准号:
    429491391
  • 财政年份:
    2019
  • 资助金额:
    $ 18.39万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了