Research on generating functions of the number of group homomorphisms and subgroup lattices of groups
群同态数生成函数及群子群格的研究
基本信息
- 批准号:13640004
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The following results have been obtained.1. Let A be a finite cyclic p-group, and let G be a finite p-group on which A acts. If the number of complements of G in the semi-direct product AG is not divisible by the greatest common divisor gcd(p|A|, |G|) of p|A|, where |A| is the order of A, and the order |G| of G, then G is a exceptional p-group, namely, a cyclic p-group, a dihedral, generalized quaternion, or semi-dihedral 2-group. (This result has been obtained in the joint work with Masafumi Murai.)2. Let A be the direct product of two cyclic p-groups, and let G be a finite exceptional p-group on which A acts. The number of complements of G in AG is divisible by gcd(|A|, |G|) of |A| and |G|. (This result has been obtained in the joint work with Tsunenobu Asai and Takashi Niwasaki.)3. Let A be the direct product of a cyclic p-group and a cyclic group of order p^2, and let G be a finite p-group on which A acts. The number of complements of G in AG is divisible by gcd(|A|, |G|), which is a generalization of a theorem of P. Hall.4. For the number of permutation representations of a finite abelian p-group, its p-adic properties have been obtained. In the proof, the generating function has been applied.
取得了如下结果:1.设A是有限循环p-群,G是A作用于其上的有限p-群.如果半直积AG中G的补数不能被最大公约数gcd(p)整除|一|, |G|)P|一|得双曲余切值.|一|是A的顺序,|G|则G是例外p-群,即循环p-群、二面体、广义四元数或半二面体2-群。(This在与村井雅史的合作中取得了成果。2.设A是两个循环p-群的直积,G是A作用于其上的有限例外p-群. 2. G在AG中的补数可被gcd整除(|一|, |G|),共|一|和|G|. (This在与浅井恒信和Niwasaki隆的共同工作中获得了结果。3.设A是循环p-群与p ^2阶循环群的直积,G是A作用于其上的有限p-群。2. G在AG中的补数可被gcd整除(|一|, |G|),这是一个定理的推广P.Hall.4。对于有限交换p-群的置换表示数,得到了它的p-adic性质。在证明中,应用了母函数.
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Motohiko Sato: "A level set approach to semi-continuous viscosity solutions for Cauchy problems"Communications in P.D.E.. 26. 813-839 (2001)
Motohiko Sato:“柯西问题半连续粘度解决方案的水平集方法”Communications in P.D.E.. 26. 813-839 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Takegahara: "A generating function for the number of homomorphisms from a finitely generated abelian group to an alternating group"Journal of Algebra. 248. 554-574 (2002)
Y.Takegahara:“从有限生成的阿贝尔群到交替群的同态数的生成函数”代数杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Asai, T.Niwasaki, Y.Takegahara: "Crossed homomorphisms from rank 2 abelian to exceptional p-groups"Journal of Algebra. (to appear).
T.Asai、T.Niwasaki、Y.Takegahara:“从 2 阶阿贝尔到特殊 p 群的交叉同态”代数杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H. Ishihara, H. Ochiai, Y. Takegahara, T. Yoshida: "p-divisibility of the number of solutions of x^p=1 in a symmetric group"Annals of Combinatorics. 5. 197-210 (2001)
H. Ishihara、H. Ochiai、Y. Takegahara、T. Yoshida:“对称群中 x^p=1 的解数的 p 整除性”组合学年鉴。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Ishihara: "p-divisibility of the number of solutions of x^p=1 in a symmetric group"Annals of Combinatorics. 5. 197-210 (2001)
H.Ishihara:“对称群中 x^p=1 的解数的 p 整除性”组合学年鉴。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKEGAHARA Yugen其他文献
TAKEGAHARA Yugen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKEGAHARA Yugen', 18)}}的其他基金
Research on p-adic properties of the numbers of permutation representations
排列表示数的p进数性质研究
- 批准号:
22540004 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on properties of generating functions for permutation representations and their applications.
排列表示生成函数的性质及其应用研究。
- 批准号:
17540002 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on properties of generating functions of the number of special permutation representations and their applications.
特殊排列表示数生成函数的性质及其应用研究。
- 批准号:
15540002 - 财政年份:2003
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)