Research on properties of generating functions for permutation representations and their applications.

排列表示生成函数的性质及其应用研究。

基本信息

  • 批准号:
    17540002
  • 负责人:
  • 金额:
    $ 2.39万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

a) For each natural number n, let G_n be the kernels of certain linear characters of the wreath product of a finite group by the symmetric group S_n on n letters. When A is a finitely generated group or a profinite group, the exponential generating function for the number of homomorphisms from A to G_n is determined.b) For a finite group G, the properties of the function T_n from G to the nonnegative integers such that for each g, T_n (g) is the number of sequences (x_1,x_2,…,x_n) of elements of G satisfying the higher commutator [x_1,x_2,…,x_n]=g are obtained.c) It is obtained that a finite group G is nilpotent of class n if and only if a certain matrix determined from the character table of G is nilpotent of index n.d) A certain congruence equation modulo p for the number of subgroups of index d, d a fixed natural number, in the free product of finite abelian groups is obtained.e) Suppose that a finite group A is an operator group of a finite group G, and consider G as a right A-set. A free right G-set Y is called (A,G)-set if Y is a left A-set with the action given by a(yg)=(ay)^ag, a∈A, y∈Y, g∈G. An (A,G)-set is called simple if it is a transitive A-set. A complete set of representatives of isomorphism classes of simple (A,G)-sets is determined. The Grothendieck ring of the category of the (A,G)-set is defined, and some properties of the Burnside ring of a finite group are generalized. Moreover, an exlicit formula of Brauer's induction theorem is obtained as an application of the theory.
a)对于每个自然数n,设G_n为有限群与对称群S_n在n个字母上的圈积的某些线性特征的核。当A是有限生成群或无限生成群时,确定A到G_n的同态个数的指数生成函数。有限群G b),函数的性质从G T_n非负整数,对于每一个G, T_n (G)是序列的数量(x_1、x_2…,x_n) G的元素满足更高的换向器(x_1、x_2…,x_n) = G obtained.c)是获得一个有限群G的幂零类n当且仅当一个特定的字符表的矩阵确定G是幂零指数无日期)一定的同余方程模p子群的指数d的数量,得到了有限阿贝尔群自由积中的一个固定自然数D。e)设有限群a是有限群G的算子群,并设G为右a集。一个自由的右G集Y称为(A,G)-集,如果Y是一个左A集,其作用为A (yg)=(ay)^ag, A∈A, Y∈Y, G∈G。如果一个(A,G)集是可传递的A集,则称其为简单集。确定了简单(A,G)-集的同构类的代表的完备集。定义了(A,G)-集合范畴的Grothendieck环,推广了有限群Burnside环的一些性质。此外,作为该理论的应用,得到了Brauer归纳定理的一个显式公式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Periodic Solutions of Elliptic-Parabolic Variational Inequalities with Time-Dependent Constraints
  • DOI:
    10.3934/dcds.2007.19.335
  • 发表时间:
    2006-02
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    M. Kubo;N. Yamazaki
  • 通讯作者:
    M. Kubo;N. Yamazaki
Extremal self-dual codes of length 64 through neighbors and covering radii Designs
通过邻居和覆盖半径设计的长度为 64 的极值自对偶码
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.-M.Deshouillers;K.Kawada;T.D.Wooley;川田 浩一;川田 浩一;Koichi Kawada;川田 浩一;川田 浩一;Koichi Kawada;川田 浩一;Koichi Kawada;川田 浩一;Koichi Kawada;川田 浩一;Koichi Kawada;川田 浩一;Koichi Kawada;Y. Takegahara;Naoki Chigira;Naoki Chigira;竹ヶ原 裕元;Naoki Chigira;Naoki Chigira
  • 通讯作者:
    Naoki Chigira
Global solvability of constrained singular diffusion equation associated with essential variation
与本质变差相关的约束奇异扩散方程的全局可解性
Some self-dual codes invariant under the Hall-Janko group
Hall-Janko群下的一些自对偶码不变
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Chigira;M. Harada;M. Kitazume
  • 通讯作者:
    M. Kitazume
Nilpotent groups and character tables
幂零群和字符表
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.-M.Deshouillers;K.Kawada;T.D.Wooley;川田 浩一;川田 浩一;Koichi Kawada;川田 浩一;川田 浩一;Koichi Kawada;川田 浩一;Koichi Kawada;川田 浩一;Koichi Kawada;川田 浩一;Koichi Kawada;川田 浩一;Koichi Kawada;Y. Takegahara;Naoki Chigira;Naoki Chigira;竹ヶ原 裕元
  • 通讯作者:
    竹ヶ原 裕元
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKEGAHARA Yugen其他文献

TAKEGAHARA Yugen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKEGAHARA Yugen', 18)}}的其他基金

Research on p-adic properties of the numbers of permutation representations
排列表示数的p进数性质研究
  • 批准号:
    22540004
  • 财政年份:
    2010
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on properties of generating functions of the number of special permutation representations and their applications.
特殊排列表示数生成函数的性质及其应用研究。
  • 批准号:
    15540002
  • 财政年份:
    2003
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on generating functions of the number of group homomorphisms and subgroup lattices of groups
群同态数生成函数及群子群格的研究
  • 批准号:
    13640004
  • 财政年份:
    2001
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了