Research on properties of generating functions of the number of special permutation representations and their applications.
特殊排列表示数生成函数的性质及其应用研究。
基本信息
- 批准号:15540002
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
a)We study the properties of two p-adic power series exp(f(x)) and exp(g(x)), which appear in the exponential generating function for the number of solutions in the alternating group on n-letters to the equation x^d=1. Moreover, when exp(f(x)) and exp(g(x)) are considered as the exponential generating functions for the sequences {h_n} and {r_n}, respectively, we express h_n and r_n by p-adic analytic functions.b)Let H be a finite simple group, and identify H with the group consisting of all inner automorphisms of H. Let G be a group of automorphisms of H, and suppose that an element a of G is not an element of H and that a^2 is an element of H. The conjecture : "if a divisor e of the order of H is a multiple of the largest power of 2 dividing the order of H and if the number of solutions in aH to the equation x^<2e>=1 is e, then every element of aH is a solution to the equation x^<2e>=1" is jure if H is the alternating group on n-letters.c)We consider G_n to be the kernel of a homomorphism from the wreath product of a finite group G with the symmetric group on n-letters which is determined by a homomorphism from G to the cyclic group C_m generated by a primitive m-th root of the unity in the complex numbers. Using the first orthogonality relation, we prove that the exponential generating function for the number of homomorphisms from a finitely generated group A to G_n is described as a sum of exponential functions of the form exp(f(x)) which are determined by elements cφ_m(A) of the factor group A/φ_m(A) of A by the intersection φ_m(A) of all kernels of homomorphisms from A to C_m.d)We obtain, p-adic properties of the exponential generating function of the number of homomorphisms from a finite cyclic p-group to the wreath product of a finite cyclic group of order p by the symmetric group of n-letters.
A)研究了关于方程x^d=1的n个字母的交错群的解的个数的指数母函数中的两个p元幂函数exp(f(X))和exp(g(X))的性质.此外,当exp(f(X))和exp(g(X))分别被认为是序列{h_n}和{r_n}的指数母函数时,我们用p元解析函数表示h_n和r_n.设G是H的一个自同构群,设G的一个元素a不是H的一个元素,a^2是H的一个元素,猜想是:“如果H阶除数e是除以H阶的2的最大幂的倍数,且若方程x^<的解的个数;2e>;=1是e,则方程x^<;2e>;=1“的每个元素都是方程x^<;2e>;=1”的解.c)我们认为G_n是有限群G与n字母对称群的圈积的同态的核,该同态由G到由复数的单位本原m次根生成的循环群Cm的同态决定.利用第一正交关系,我们证明了有限生成群A到G_n的同态个数的指数母函数是由A的因子群A的元素cφ_m(A)/A的φ_m(A)由从A到C_m的同态的所有核的交集φ_m(A)决定的指数函数之和。有限循环p-群到p阶有限循环群的圈积与n字母对称群的同态的个数的指数母函数的p-进的性质。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masafumi Murai: "Hall's relations in finite groups"J.Algebra. 271. 312-326 (2004)
Masafumi Murai:“有限群中的霍尔关系”J.代数。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Generating functions for permutation representations
排列表示的生成函数
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Anezaki;H;ANEZAKI Hiroshi;ANEZAKI Hiroshi;姉崎 弘;姉崎 弘;N.Chigira;Y.Takegahara
- 通讯作者:Y.Takegahara
Naoki Chigira: "On involutions which generate Mathieu groups M_<11>and M_<12>"Comm. Algebra. (to appear).
Naoki Chigira:“关于生成马蒂厄群 M_<11> 和 M_<12> 的对合”Comm。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tsunenobu Asai: "Crossed homomorphisms from rank-2 abelian to exceptional p-groups"J.Algebra. 270. 212-237 (2003)
Tsunenobu Asai:“从 2 阶阿贝尔到特殊 p 群的交叉同态”J.代数。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKEGAHARA Yugen其他文献
TAKEGAHARA Yugen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKEGAHARA Yugen', 18)}}的其他基金
Research on p-adic properties of the numbers of permutation representations
排列表示数的p进数性质研究
- 批准号:
22540004 - 财政年份:2010
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on properties of generating functions for permutation representations and their applications.
排列表示生成函数的性质及其应用研究。
- 批准号:
17540002 - 财政年份:2005
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on generating functions of the number of group homomorphisms and subgroup lattices of groups
群同态数生成函数及群子群格的研究
- 批准号:
13640004 - 财政年份:2001
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
幾何多様体の変換群に関する共形不変量の構成と消滅による等長群の出現
通过关于几何流形变换群的共形不变量的构造和消失而出现等距群
- 批准号:
22K03319 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorics of Mixed Graphs -- Complexity and Homomorphism
混合图的组合——复杂性和同态
- 批准号:
RGPIN-2019-04857 - 财政年份:2020
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual
Combinatorics of Mixed Graphs -- Complexity and Homomorphism
混合图的组合——复杂性和同态
- 批准号:
DGECR-2019-00102 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Launch Supplement
Combinatorics of Mixed Graphs -- Complexity and Homomorphism
混合图的组合——复杂性和同态
- 批准号:
RGPIN-2019-04857 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual
The Homomorphism Form of Birational Anabelian Geometry
双有理阿贝尔几何的同态形式
- 批准号:
2237586 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Studentship
Vertical Search Engine and Graph Homomorphism for Enhancing the Cybersecurity Workforce
用于增强网络安全劳动力的垂直搜索引擎和图同态
- 批准号:
1934782 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
A study on the Johnson homomorphism for the mapping class group: an approach using one-dimensional objects on surfaces
映射类群的约翰逊同态研究:一种在表面上使用一维对象的方法
- 批准号:
18K03308 - 财政年份:2018
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: EAGER: Homomorphism Problems in Digraphs (Dichotomies)
AF:EAGER:有向图中的同态问题(二分法)
- 批准号:
1751765 - 财政年份:2017
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Graph homomorphism and Hedetniemi's conjecture
图同态和 Hedetniemi 猜想
- 批准号:
261525-2007 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual