Relations between character formula of classical groups, and the generating functions of P-partitions of d-complete posets

经典群的特征公式与d-完全偏序集P-划分的生成函数之间的关系

基本信息

  • 批准号:
    13640022
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

D-complete posets are defined by R. P. Proctor in relation with the generalized Weyl groups of Kac-Moody algebra. R. P. Proctor showed that d-complete posets are obtained from 15 irreducible d-complete ones. We studied the generating functions of (P. w)-partitions of 15 irreducible d-complete posets and showed that generating functions of any d-complete posets are obtained from those of irreducible ones. Further we also showed that the ordinary one variable generating functions can extended to certain multi-variable generating functions. Along the proof of those formulas, we find a lot of interesting determinants and Pfaffians which are extensions of classical ones. We also use (k, l)-hook Schur functions and its formulas to evaluate those determinants and Pfaffians. We also found that there are several evidences that we can expect that there must be a kind of k-rim hook tableaux for general d-complete posets and a kind of hook formula must hold for these rim hook tableaux. The simplest case corresponds to the classical formula, i.e., Young's lattice, which corresponds to the ordinary Young semi-standard tableaux. The second simplest case is the shifted shapes. There are famous symmetric functions, i.e., Schur Q-functions, associated with shifted shapes. It is also interesting theme to study similar generating functions of posets. We also study the (P. w)-partitions of height at most n, which can be considered as a generalization of ordinary plane partitions. Usually these generating functions do not have hook formulas, but the value of these generating functions at q=-1 might be very interesting. In this way we found a lot of interesting formulas and the study is still in progress.
D-完全偏序集是由R. P.普罗克特与Kac-Moody代数的广义Weyl群的关系. R. P.普罗克特证明了d-完全偏序集是由15个不可约的d-完全偏序集得到的。本文研究了15个不可约d-完全偏序集的(P,w)-划分的生成函数,证明了任何d-完全偏序集的生成函数都可以由不可约偏序集的生成函数得到。进一步证明了普通的一元母函数可以推广到某些多元母函数。沿着这些公式的证明,我们发现了许多有趣的行列式和Pfrons,它们是经典行列式和Pfrons的推广。我们还使用(k,l)-hook Schur函数及其公式来计算这些行列式和Pfuman。我们还发现,有几个证据表明,对于一般的d-完备偏序集,一定存在一种k-rim hook tableaux,并且对于这种k-rim hook tableaux,一定存在一种hook公式。最简单的情况对应于经典公式,即,杨氏晶格,它对应于普通的杨氏半标准表。第二种最简单的情况是变形。有著名的对称函数,即,Schur Q-函数,与移位的形状相关联。研究偏序集的相似生成函数也是一个有趣的课题。我们还研究了高度不超过n的(P,w)-分拆,它可以被认为是普通平面分拆的推广。通常这些生成函数没有钩子公式,但是这些生成函数在q=-1时的值可能非常有趣。通过这种方式,我们发现了很多有趣的公式,研究仍在进行中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHIKAWA Masao其他文献

ISHIKAWA Masao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHIKAWA Masao', 18)}}的其他基金

The Study of Oral Function Improvement System to the Cognitive Function for the Elderly in Japan
日本口腔功能改善系统对老年人认知功能的研究
  • 批准号:
    24659940
  • 财政年份:
    2012
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
The determinants and Pfaffians appearing in the enumeration of plane partitions and its applications on mathematical physics
平面分割枚举中出现的行列式和普法夫式及其在数学物理中的应用
  • 批准号:
    21540015
  • 财政年份:
    2009
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on determinants and Pfaffians appearing in Enumerative Combinatorics
枚举组合学中行列式和普法夫式的研究
  • 批准号:
    19540030
  • 财政年份:
    2007
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of enumerations of plane partitions and evaluations of determinants and Pfaffians from the aspect of hypergeometric series
从超几何级数角度研究平面分割的枚举及行列式和普法夫式的求值
  • 批准号:
    17540024
  • 财政年份:
    2005
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LITTLEWOOD TYPE FORMULA OF THE FINITE FORMULA OF THE CLASSICAL GROUPS
经典群有限公式的LITTLEWOOD型公式
  • 批准号:
    09640037
  • 财政年份:
    1997
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

The combinatorics of alternating sign matrices and plane partitions
交替符号矩阵和平面划分的组合数学
  • 批准号:
    2597934
  • 财政年份:
    2021
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Studentship
Expansion of the research on alternating sign matrices, plane partitions and tilings in the aspect of distributive lattice
分布格方面交替符号矩阵、平面划分和平铺的研究拓展
  • 批准号:
    20K03558
  • 财政年份:
    2020
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The study of plane partitions, enumeration of tiliings, symmetric functions, Pfaffians and determinants
平面分割、平铺枚举、对称函数、普法夫矩阵和行列式的研究
  • 批准号:
    16K05068
  • 财政年份:
    2016
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Plane partitions from the viewpoint of biorthogonal polynomials
从双正交多项式的角度看平面分割
  • 批准号:
    16K05058
  • 财政年份:
    2016
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dimer systems with gaps and their connections with statistical physics, plane partitions, and alternating sign matrices
具有间隙的二聚体系统及其与统计物理、平面分区和交替符号矩阵的联系
  • 批准号:
    1501052
  • 财政年份:
    2015
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Continuing Grant
Reserch on enumeration of alternating sign matrices, plane partitions and related determinants and Pfaffians
交替符号矩阵的计数、平面划分及相关行列式和普法夫矩阵的研究
  • 批准号:
    25400018
  • 财政年份:
    2013
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic combinatorics of plane partitions and alternating sign matrices, and related representation theory and mathematical physics
平面分割和交替符号矩阵的代数组合,以及相关的表示理论和数学物理
  • 批准号:
    24340003
  • 财政年份:
    2012
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The determinants and Pfaffians appearing in the enumeration of plane partitions and its applications on mathematical physics
平面分割枚举中出现的行列式和普法夫式及其在数学物理中的应用
  • 批准号:
    21540015
  • 财政年份:
    2009
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
lntegrability and geometry in random plane partitions
随机平面分区中的可积性和几何
  • 批准号:
    21540218
  • 财政年份:
    2009
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of enumerations of plane partitions and evaluations of determinants and Pfaffians from the aspect of hypergeometric series
从超几何级数角度研究平面分割的枚举及行列式和普法夫式的求值
  • 批准号:
    17540024
  • 财政年份:
    2005
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了