Distribution of units of an algebraic number field from the viewpoint of class field theory and analytic number theory
从类域论和解析数论的角度看代数数域的单位分布
基本信息
- 批准号:13640049
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim o f this research is to study the distribution of units of an algebraic number field. There maybe several viewpoints. Ours is based on the class field theory and the analytic number theory The reason for the class field theory is the following: For an integral ideal A of an algebraic number field F, we can associate the unique abelian extension of conductor Aover F, and the extension degree is the product of the lass number of F and the residual index of residue classes represented by units in the residue class group modulo A. The class number is studied very well. But there is nothing about residual indices. As a matter of fact, almost nobody knew how to formulate the vague problem "distribution of units". So we adopted the viewpoint that the distribution of values of residual indices is nothing but the distribution of units, and we studied it using methods in the analytic number theory. At the beginning, we studied real quadratic fields and real cubic fields with negative discriminant, in detail.. The results were published in Nagoya Math. J. and J. of Number Theory. The next problem was its generalization to any algebraic number field. I completed it in the case of prime ideals. To treat more general ideals, it is necessary to study algebraic number fields in detail. For the time being, we are trying the rational prime number case and in the case that the rank of the unit group is almost over. When the rank of unit group is greater than one, the situation is much more complicated and we are collecting more information.
研究代数数域的单位分布问题。可能有几种观点。类域论的理由是:对于代数数域F的整理想A,我们可以将F上的导体A的唯一阿贝尔扩张联系起来,扩张度是F的类数与模A的剩余类群中单位所表示的剩余类的剩余指数的乘积。班级号码研究得很好。但是没有关于剩余指数的内容。事实上,几乎没有人知道如何制定模糊的问题“单位分配”。因此,我们采用了剩余指数值的分布就是单位分布的观点,并利用解析数论的方法对其进行了研究。首先,我们详细研究了具有负判别式的真实的二次域和真实的三次域。结果发表在名古屋数学杂志和数论杂志上。下一个问题是它的推广到任何代数数域。我在素理想的情况下完成了它。为了处理更一般的理想,有必要详细研究代数数域。目前,我们正在尝试有理数素数的情况下,在单位群的秩几乎结束的情况下。当单元组的秩大于1时,情况要复杂得多,我们正在收集更多的信息。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshiyuki Kitaoka: "Distribution of Units of a Cubic Field with Negative Discriminant"Journal of Number Theory. 91. 318-355 (2001)
Yoshiyuki Kitaoka:“带有负判别式的立方域单位的分布”数论杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Distribution of units of algebraic number fields with only one fundamental unit
仅具有一个基本单位的代数数域的单位分布
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Y.Kitaoka;Y.Kitaoka
- 通讯作者:Y.Kitaoka
Distribution of units of an algebraic number field, Galois Theory and Modular Forms, Developments in Mathematics
代数数域的单位分布、伽罗瓦理论和模形式、数学发展
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Y-M.J.Chen;Y.Kitaoka;J.Yu;Y.Kitaoka;Y.Kitaoka;Y.Kitaoka;Y.Kitaoka
- 通讯作者:Y.Kitaoka
Ray class field of prime conductor of a real quadratic field
实二次场主导体的射线类场
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Y.Kitaoka
- 通讯作者:Y.Kitaoka
Y.Chen, Y.Kitaoka, J.Yu: "On primitive roots of tori : The case of function fields"Mathematische Zeitschrift. 243. 201-215 (2003)
Y.Chen、Y.Kitaoka、J.Yu:“论环面的原根:函数域的情况”Mathematische Zeitschrift。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KITAOKA Yoshiyuki其他文献
KITAOKA Yoshiyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KITAOKA Yoshiyuki', 18)}}的其他基金
Distribution of units of an algebraic number field modulo rational primes
代数数域模有理素数的单位分布
- 批准号:
18540056 - 财政年份:2006
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthetic research on algebra
代数综合研究
- 批准号:
02302002 - 财政年份:1990
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似海外基金
Analytic Number Theory at the Interface
界面上的解析数论
- 批准号:
2401106 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Continuing Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
- 批准号:
DP240100186 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Projects
RII Track-4:NSF: From Analytic Number Theory to Harmonic Analysis
RII Track-4:NSF:从解析数论到调和分析
- 批准号:
2229278 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
CAREER: Research in and Pathways to Analytic Number Theory
职业:解析数论的研究和途径
- 批准号:
2239681 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Continuing Grant
Applications of random matrix theory in analytic number theory
随机矩阵理论在解析数论中的应用
- 批准号:
RGPIN-2019-04888 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Statistics and Analytic Number Theory
算术统计与解析数论
- 批准号:
RGPIN-2017-06589 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
Analytic number theory and random matrix theory
解析数论和随机矩阵论
- 批准号:
RGPIN-2019-05037 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
On the Liouville function in short intervals and further topics in analytic number theory
短区间内的刘维尔函数以及解析数论中的进一步主题
- 批准号:
567986-2022 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Postdoctoral Fellowships
Developing an alternative approach to analytic number theory
开发解析数论的替代方法
- 批准号:
RGPIN-2018-04174 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
Topics in Analytic Number Theory and Additive Combinatorics
解析数论和加法组合学主题
- 批准号:
2200565 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant














{{item.name}}会员




