Topology of completions of the space of rational functions

有理函数空间的补全拓扑

基本信息

  • 批准号:
    13640085
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

For instanton moduli spaces we have the Uhlenbeck completion, which is useful in the field of gauge theory. The purpose of this study is to define a similar completion for spaces of rational functions from S^2 to a complex manifold V.First we study the typical case V = CP^n. Let Rat_k(CP^n) be the space of based holomorphic maps of degree k from S^2 to CP^n. Let i_k : Rat_k(CP^n) → Ω^2_kCP^n 【similar or equal】 Ω^2S^<2n+1> be the inclusion. Segal showed that i_k is a homotopy equivalence up to dimension k(2n - 1). Later I and independently Cohen-Cohen-Mann-Milgram described the stable homotopy type of Rat_k(CP^n) in terms of stable summands of Ω^2S^<2n+1>.Note that Rat_k(CP^n) consists of (n + 1)-tuples of monic degree k complex polynomials without common roots. Generalizing this, we define a space X^l_k(CP^n) by the set of (n + 1)-tuples of monic degree k complex polynomials with at most l roots in common. We have X^0_k(CP^n) = Rat_k(CP^n) and X^k_k(CP^n) = C^<k(n+1)>. In this study I proved that the latter is the Uhlenbeck completion of the former. This implies that X^l_k(CP^n) is a space which appears when we shift from Rat_k(CP^n) to its completion. Moreover, I succeeded in determining the stable homotopy type of X^l_k(CP^n).Next I change CP^n to a loop group ΩG. In this case the space of rational functions from S^2 to ΩG is exactly the instanton moduli space. I studied its completion. In the process of the study, I was able to prove the following theorem: Let C be the centralizer of SU(2) in G and let J : G/C → Ω^3_0 be the map defined by J(gC)(x) = gxg^<-1>x^<-1>. Then J_* : H_*(G/C; Z/2) → H_*(Ω^3_0G; Z/2) is injective. Note that this result is a generalization of the Bott's theorem about generating maps of ΩG, and very interesting in itself.
对于瞬子模空间,我们有Uhlenbeck完备化,这在规范理论领域很有用。本文的目的是定义一个从S^2到复流形V的有理函数空间的类似完备化。首先我们研究了典型的情形V = CP^n。设Rat_k(CP^n)是从S^2到CP^n的k次基全纯映射空间。设i_k:Rat_k(CP^n)→ Ω ^2_kCP ^n [相似或相等] Ω^2S^<2n+1>为包含。Segal证明了i_k是k(2n - 1)维同伦等价。后来我和Cohen-Cohen-Mann-Milgram独立地用Ω^2S^<2n+1>的稳定和项描述了Rat_k(CP^n)的稳定同伦类型,注意Rat_k(CP^n)由没有公共根的一元k次复多项式的(n + 1)-元组组成。推广这一点,我们定义一个空间X^l_k(CP^n)由一次k阶复多项式的(n + 1)元组的集合,最多有l个共同的根。我们有X^0_k(CP^n)= Rat_k(CP^n)和X^k_k(CP^n)= C^<k(n+1)>。本文证明了后者是前者的Uhlenbeck完备化。这意味着X^l_k(CP^n)是当我们从Rat_k(CP^n)移到它的完备时出现的空间。此外,还成功地确定了X^l_k(CP^n)的稳定同伦类型,并将CP^n化为环群ΩG。在这种情况下,从S^2到ΩG的有理函数空间就是瞬子模空间。我研究了它的完成。在研究的过程中,我证明了如下定理:设C是SU(2)在G中的中心化子,设J:G/C → Ω^3_0是由J(gC)(x)= gxg^ x^定义的映射<-1><-1>。则J_*:H_*(G/C; Z/2)→ H_*(Ω^3_0G; Z/2)是内射的.注意,这个结果是关于生成ΩG的映射的博特定理的推广,并且本身非常有趣。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yasuhiko Kamiyama: "Holomorphic vector fields on moduli spaces of polygons"New Zealand J. of Mathematics. 31. 39-42 (2002)
Yasuhiko Kamiyama:“多边形模空间上的全纯向量场”新西兰数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yasuhiko Kamiyama: "Polynomial model for homotopy fibers associated with the James construction"Math. Zeit.. 237. 149-180 (2001)
Yasuhiko Kamiyama:“与 James 构造相关的同伦纤维多项式模型”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yasuhiko Kamiyama: "Holomorphic vector fields on moduli spaces of polygons"New Zealand J.of Mathematics. 31. 39-42 (2002)
Yasuhiko Kamiyama:“多边形模空间上的全纯向量场”新西兰数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yasuhiko Kamiyama: "Polynomial model for homotopy fibers associated with the James construction"Math.Z.. 237. 149-180 (2001)
Yasuhiko Kamiyama:“与 James 构造相关的同伦纤维的多项式模型”Math.Z.. 237. 149-180 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yasuhiko Kamiyama: "Symplectic toric space associated to triangle inequalities"Geometriae Dedicata. Vol. 93. 25-36 (2002)
Yasuhiko Kamiyama:“与三角形不等式相关的辛环面空间”Geometriae Dedicata。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAMIYAMA Yasuhiko其他文献

KAMIYAMA Yasuhiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAMIYAMA Yasuhiko', 18)}}的其他基金

Applications of centers of mass configuration spaces to homotopy theory
质心构型空间在同伦理论中的应用
  • 批准号:
    18540092
  • 财政年份:
    2006
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology of spaces of conjugation-equivariant holomorphic maps
共轭等变全纯映射空间的拓扑
  • 批准号:
    15540087
  • 财政年份:
    2003
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
  • 批准号:
    10100493
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Collaborative R&D
PhD Project to be confirmed on completion of the training year
博士项目将在培训年完成后确认
  • 批准号:
    2884659
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Studentship
PhD Project to be confirmed on completion of the training year
博士项目将在培训年完成后确认
  • 批准号:
    2884772
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Studentship
PhD projects to be confirmed on completion of the training year
博士项目将在培训年结束后确认
  • 批准号:
    2881760
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Studentship
PhD projects to be confirmed on completion of the training year
博士项目将在培训年结束后确认
  • 批准号:
    2881770
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Studentship
PhD Project to be confirmed on completion of the training year
博士项目将在培训年完成后确认
  • 批准号:
    2887573
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Studentship
Supporting Degree Completion in Engineering and Engineering Technology Programs through Experiential Learning and Self-Directed Professional Development
通过体验式学习和自主专业发展支持工程和工程技术课程的学位完成
  • 批准号:
    2221230
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Improved Persistence to Degree Completion through Enhanced Engineering Identity
通过增强工程特性提高完成学位的持久性
  • 批准号:
    2221623
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
Advancing Student Potential for Inclusion with Research Experiences (ASPIRE)
通过研究经验提升学生融入的潜力(ASPIRE)
  • 批准号:
    10678356
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
PhD Project to be confirmed on completion of the training year
博士项目将在培训年完成后确认
  • 批准号:
    2884648
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了