Topology of spaces of conjugation-equivariant holomorphic maps
共轭等变全纯映射空间的拓扑
基本信息
- 批准号:15540087
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let Rat_k(CP^n) be the space of basepoint-preserving holomorphic maps fromS^2 to CP^n. This is a subspace of Ω^2_kCP^n. A theorem by me and Cohen-Cohen-Mann-Milgram tells that the stable homotopy type of Rat_k(CP^n) is described in terms of stable summands of Ω^2S^<2n+1>. The purpose of this research is to generalize the theorem in two directions.(i)Let RRat_k(CP^n) be the subspace of Rat_k(CP^n) of maps which commute with an involution by complex conjugation. Brockett and Segal determined the homotopy type of RRat_k(CP^1). But the case n【greater than or equal】2 was unknown. The first achievement of this research is to determine the stable homotopy type of RRat_k(CP^n) completely. In this case, the corresponding continuous mapping space is ΩS^n×Ω^2S^<2n+1>.(ii)Let P_<k,n> be the space of polynomials such that the number of n-fold roots is at most l. In 1970, Arnold tried to determine the homology group of P^l_<k,n>, but most part was left unknown. The second achievement of research is to determine the stable homotopy type of P^l_<k,n> completely, and to show that the homology groups of P^l_<k,n> are determined from this. As a result, I solved Arnold's problem completely. Roughly, the main result is to prove a relationship between a space of single polynomials and a space of n-tuples of polynomials.The achievement in (ii) was highly evaluated. For example, I gave a plenary talk at the COE International Conference held at the University of Tokyo in July 2005.
设Rat_k(CP^n)是从S^2到CP^n的保基点全纯映射空间。这是Ω ^2_kCP ^n的一个子空间。我和Cohen-Cohen-Mann-Milgram的一个定理告诉我们Rat_k(CP^n)的稳定同伦类型是用Ω^2S^<2n+1>的稳定和项来描述的。本研究的目的是在两个方向上推广定理。(i)设Rat_k(CP^n)是Rat_k(CP^n)的复共轭对合映射的子空间。Brockett和Segal确定了RRat_k(CP^1)的同伦类型。但n[大于或等于]2的情况是未知的。本研究的第一个成果是完全确定了RRat_k(CP^n)的稳定同伦类型。在这种情况下,相应的连续映射空间是ΩS^n×Ω^2S^<2n+1>。(ii)设P_<k,n>是多项式空间,使得n重根的个数至多为l。1970年,Arnold试图确定P^l_<k,n>的同调群,但大部分未知。研究的第二个成果是完全确定了P^l_<k,n>的稳定同伦型,并证明了P^l_<k,n>的同调群是由此确定的。结果,我完全解决了阿诺德的问题。粗略地说,主要结果是证明了单多项式空间和n元多项式空间之间的关系,对(ii)中的成果给予了高度评价。例如,2005年7月在东京大学举行的COE国际会议上,我做了全体会议的发言。
项目成果
期刊论文数量(68)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yasuhiko Kamiyama: "Homology of the completion of instanton moduli spaces"Bull.Belgian Math.Soc.. 10. 169-178 (2003)
Yasuhiko Kamiyama:“瞬子模空间补全的同调”Bull.Belgian Math.Soc.. 10. 169-178 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A polynomial model for the double-loop space of an even sphere
偶球双环空间的多项式模型
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama
- 通讯作者:Yasuhiko Kamiyama
Yasuhiko Kamiyama: "On tangent bundles of certain homogeneous spaces"International Journal of Pure and Applied Mathematics. (印刷中).
Yasuhiko Kamiyama:“论某些齐次空间的切丛”国际纯粹与应用数学杂志(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Geometric construction of a classifying space for the fibre of the double suspension
双悬浮纤维分级空间的几何结构
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama
- 通讯作者:Yasuhiko Kamiyama
Generating varieties for the triple loop space of classical Lie groups
经典李群三环空间的生成簇
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama;Yasuhiko Kamiyama
- 通讯作者:Yasuhiko Kamiyama
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAMIYAMA Yasuhiko其他文献
KAMIYAMA Yasuhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAMIYAMA Yasuhiko', 18)}}的其他基金
Applications of centers of mass configuration spaces to homotopy theory
质心构型空间在同伦理论中的应用
- 批准号:
18540092 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of completions of the space of rational functions
有理函数空间的补全拓扑
- 批准号:
13640085 - 财政年份:2001
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Conjugation and encapsulation of photoactive metal complexes for medicinal applications
用于医学应用的光敏金属配合物的缀合和封装
- 批准号:
2784635 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
RUI: New Porphyrinoid Architectures with Extended Conjugation Pathways
RUI:具有扩展共轭途径的新型卟啉结构
- 批准号:
2247214 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Multiplexed in vivo assembly of long and complex DNA
长且复杂的 DNA 的多重体内组装
- 批准号:
10760876 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
RII Track-4:NSF: Bioactive Surfaces Through Affinity Tag Protein-Polymer Conjugation
RII Track-4:NSF:通过亲和标签蛋白-聚合物缀合形成生物活性表面
- 批准号:
2229274 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Development of "humanized" molecule-molecule conjugation module proteins by protein engineering
通过蛋白质工程开发“人源化”分子-分子缀合模块蛋白质
- 批准号:
23K19239 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Criation of topological pi-conjugation system
拓扑π共轭系统的提出
- 批准号:
22H02068 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Circadian Regulation of Antibiotic Resistance in the Microbiome
微生物组抗生素耐药性的昼夜节律调节
- 批准号:
10465012 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Enzyme-Mediated Site-Specific Conjugation of Antibodies to Nanoparticles
酶介导的抗体与纳米颗粒的位点特异性缀合
- 批准号:
10436681 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Mitigating ADA Through Site-specific Conjugation Technology
通过位点特异性缀合技术缓解 ADA
- 批准号:
10750703 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Functional improvements in soy protein by preparing bioconjugates with pectin
通过用果胶制备生物共轭物来改善大豆蛋白的功能
- 批准号:
22K05523 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




