Research on topology related to variational problems and application of Mathematica
变分问题相关拓扑研究及Mathematica应用
基本信息
- 批准号:13640090
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let G be a Lie group and let p be a prime. In the case the Lie group G is one of exceptional Lie groups F4, E6, E7, E8 and p=3 or in the case G=E8, p=5, the integral cohomology of G has p-torsion and the mod p cohomology of its classifying space BG is unknow or even if it has been already computed, the result is involved. There is a so-called Adams' conjecture on the mod p cohomology of the classifying spaces of compact Lie groups, which asserts that the Quillen homomorphism is a monomorphism for p an odd prime. If the the description of the mod p cohomology of classifying spaces in this form, it would be useful. In the study of the mod p cohomology of classifying spaces of exceptional Lie groups above, one of the most powerful tool is the Rothenberg-Steenrod spectral sequence whose E2 term was identified with the cotorsion product of the Lie group G.We computed certain rings of invariants, which could be done by computer calculation in some cases, and obtained the following results :(1) for (G,p>(F4,3), (E6,3), (E7,3), (E8,5), the Rothenberg-Steenrod spectral sequence converging to the mod p cohomology of BG collapses at the E2 term.(2) For (G,p>(E8,3), the Rothenberg-Steenrod spectral sequence does not collapse at the E2 level.Furthermore, the computation of certain cotorsion products is equivalent to the computation of the cyclic group C of order p with certain C-modules. We hope this computation would be applied to the computation of the mod p cohomology of classifying spaces of loop groups which are related to variational problems.
设G是李群,p是素数。当李群G是例外李群F_4、E_6、E_7、E_8中的一个且p=3或当G= E_8、p=5时,G的整上同调有p-挠,其分类空间BG的模p上同调未知或即使已计算过,也涉及到结果.关于紧李群的分类空间的模p上同调,有一个所谓的亚当斯猜想,它断言当p是奇素数时,Quillen同态是一个单同态。如果分类空间的模p上同调能用这种形式来描述,那将是很有用的。在研究上述例外李群分类空间的模p上同调时,最有力的工具之一是Rothenberg-Steenrod谱序列,它的E2项与李群G的余挠积一致。我们计算了某些不变量环,在某些情况下可以通过计算机计算完成,得到了以下结果:(1)对于(G,p>(F4,3),(E6,3),(E7,3),(E8,5),收敛于BG的模p上同调的Rothenberg-Steenrod谱序列在E2项处坍缩. (2)对于(G,p>(E8,3)),Rothenberg-Steenrod谱序列在E2水平上不坍缩.此外,某些余挠积的计算等价于p阶循环群C的某些C-模的计算.我们希望这种计算能应用于与变分问题有关的环群分类空间的模p上同调的计算。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Kozlowski, K.Yamaguchi: "Spaces of holomorphic maps of degree one between complex projective spaces"Topology and its Applications.
A.Kozlowski、K.Yamaguchi:“复射影空间之间的一阶全纯映射的空间”拓扑及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
亀子正喜, 三村護: "On the Rothenberg-Steenrod spectral sequence for the mod 3 cohomology of the classifying space of the exceptional Lie group E8"数理解析研究所講究録. 1357. 95-103 (2004)
Masaki Kameko、Mamoru Mimura:“关于特殊李群 E8 分类空间的 mod 3 上同调的 Rothenberg-Steenrod 谱序列”数学科学研究所研究记录 1357. 95-103 (2004)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
On the Rothenberg-Steenrod spectral sequence for the mod 3 cohomology of the classifying space of the exceptional Lie group E_8
例外李群 E_8 分类空间的 mod 3 上同调的 Rothenberg-Steenrod 谱序列
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Masaki Kameko;Mamoru Mimura
- 通讯作者:Mamoru Mimura
Andrzej Kozlowski: "Derivative Pricing with Mathematica"Proceedings of the 6th World Multiconference on Systemics, Cybernetics and Informatics. 16. 157-162 (2002)
Andrzej Kozlowski:“Derivative Pricing with Mathematica”第六届世界系统学、控制论和信息学多重会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Andrzej Kozlowski: "Algebraic Programming in Mathematica"The Mathematica Journal.
Andrzej Kozlowski:“Mathematica 中的代数规划”Mathematica 杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAMEKO Masaki其他文献
KAMEKO Masaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAMEKO Masaki', 18)}}的其他基金
Cohomology of classifying spaces from the viewpoint of equivariant cohomology of cyclic groups
从循环群等变上同调的角度看分类空间的上同调
- 批准号:
22540102 - 财政年份:2010
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomology of finite Chevalley groups
有限 Chevalley 群的上同调
- 批准号:
19540105 - 财政年份:2007
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Partial factorization of exceptional Lie group G2
异常李群 G2 的部分因式分解
- 批准号:
562646-2021 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
University Undergraduate Student Research Awards
Morava K-theory of the exceptional Lie group and flag manifold
异常李群和旗流形的 Morava K 理论
- 批准号:
24540102 - 财政年份:2012
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)