Research of the Navier-Stokes exterior problem by using dual semigmups and the Lorentz spaces
利用对偶半映射和洛伦兹空间研究纳维-斯托克斯外问题
基本信息
- 批准号:13640157
- 负责人:
- 金额:$ 2.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a joint work with Yoshihiro Shibata, we obtained a sufficient condition on time-independent external forces for the unique existence of a stationary solution in a certain class of the Navier-Stokes equation in exterior domains of dimension n greater than or equal to 3 by using the duality between the Lorentz spaces and real interpolation. Our class is a natural generalization of the so-called physically reasonable solutions, and our suffirient condition gives a unified view for the case with zero velocity at infinity and the case with non-zero velocity at infinity.Next, in a joint work with Yuko Enomoto and Yoshihiro Shibata, we verified the stability in the weak-Ln space of the stationary solution above for time-evolution under small initial perturbation in the weak-Ln space, and showed that the smallness above can be taken uniformly in the velocity at infinity of the stationary solution.Furthermore, by using real interpolation for sublinear operators, we generalized these results for time-dependent external forces, and obtained a sufficient condition for the unique existence of the corresponding time-periodic or almost periodic solutions. We also showed the stability of these solutions in weak-Ln spaces under perturbations on the external forces and initial data uniform in the velocity at infinity of the solutions.On the other hand, as a preparation for generalized the results above for general unbounded domains, we generalized the Lp-theory on the boundary value problem for the Stokes equation in a layer domain, in a joint work with Takayuki Abe for higher-order Sobolev spaces and Besov spaces, and obtained a sufficient condition on the external forces for the unique existence of the solution of the boundary value problem. In particular, we showed that the uniqueness of the solution fails in the case p=infinity, and that the Poiseuille flow can be characterized as the solution with zero as the external forces and boundary values.
在与Yoshihiro Shibata合著的论文中,利用Lorentz空间与实插值之间的对偶性,得到了n≥3维外域某类Navier-Stokes方程的平稳解唯一存在的一个与时间无关的充分条件。我们的类是所谓的物理合理解的自然推广,我们的充分条件给出了在无穷远处速度为零的情况和在无穷远处速度非为零的情况的统一观点。接下来,在与Yuko Enomoto和Yoshihiro Shibata的联合工作中,我们验证了在弱ln空间中小初始扰动下,上述平稳解在弱ln空间中时间演化的稳定性,并证明了上述的小性可以在平稳解的无穷远速度中均匀地取。进一步,利用次线性算子的实插值,将这些结果推广到与时间有关的外力,得到了相应的时间周期解或概周期解唯一存在的充分条件。我们还证明了这些解在弱ln空间中在外力扰动和初始数据下的稳定性,这些解在无穷远处的速度是均匀的。另一方面,作为将上述结果推广到一般无界域的准备工作,我们在与Takayuki Abe合著的高阶Sobolev空间和Besov空间上推广了层域上Stokes方程边值问题的lp理论,得到了边值问题解唯一存在的一个充分条件。特别地,我们证明了当p=∞时解的唯一性失效,并且泊泽维尔流可以被描述为外力和边值为零的解。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A positive solution for a nonlinear Schroedinger equation on R^N
R^N 上非线性薛定谔方程的正解
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Kazunaga Tanaka;L.Jeanjean
- 通讯作者:L.Jeanjean
Naoyuku Ishimura: "Remarks on the third order ODEs relevant to the Kuramoto-Sivashinsky equation"Journal of Differential Equations. 178-2. 466-477 (2002)
Naoyuku Ishimura:“关于与 Kuramoto-Sivashinsky 方程相关的三阶 ODE 的评论”微分方程杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masao Yamazaki: "The Navier-Stokes equation in various function spaces"American Mathematical Society Translations, Series 2. 204. 111-132 (2001)
Masao Yamazaki:“各种函数空间中的纳维-斯托克斯方程”美国数学会翻译,系列 2. 204. 111-132 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihiro Shibata, Senjo Shimizu: "On a resolvent estimate for the Stokes system with Neuman boundary condition"Differential and Integral Equations. 16-4. 385-426 (2003)
Yoshihiro Shibata、Senjo Shimizu:“关于具有诺伊曼边界条件的斯托克斯系统的解析估计”微分方程和积分方程。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kimie Nakashima, Kazunaga Tanaka: "Clustering layers and boundary layers in spatially inhomogeneous phase transition problems"Annales de l'Institute Henri Poincare (C) Non Linear Analysis. 20-1. 107-143 (2003)
Kimie Nakashima、Kazunaga Tanaka:“空间非均匀相变问题中的聚类层和边界层”Annales de lInstitute Henri Poincare (C) 非线性分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMAZAKI Masao其他文献
Preparation of Glycolether Lignin from <i>Sugi</i> (<i>Cryptomeria japonica</i> D. Don) Woodmeal by Acid-Catalyzed Solvolysis and Preparation of Heat-Resistant Polyester from the Glycolether Lignin
酸催化溶剂分解杉木粉制备乙二醇醚木质素及其制备耐热聚酯
- DOI:
10.4011/shikizai.92.220 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
ISHII Daisuke;YAMAZAKI Masao;IBAYASHI Kenta;NAKAOKI Takahiko;HAYASHI Hisao - 通讯作者:
HAYASHI Hisao
YAMAZAKI Masao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMAZAKI Masao', 18)}}的其他基金
Study on the Navier-Stokes equations on unbounded domains by way of real analysis
无界域纳维-斯托克斯方程的实分析研究
- 批准号:
21540202 - 财政年份:2009
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of the Navier-Stokes equations by using the theory of Fourier analysis and semigroup theory
利用傅立叶分析和半群理论研究纳维-斯托克斯方程
- 批准号:
11640156 - 财政年份:1999
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the Navier-Stokes equations by interpolation spaces and perturbation theory.
利用插值空间和微扰理论研究纳维-斯托克斯方程。
- 批准号:
09640164 - 财政年份:1997
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Resolvent estimates for Helmholtz equations in an exterior domain and their applications to scattering problems
外域亥姆霍兹方程的求解估计及其在散射问题中的应用
- 批准号:
23540222 - 财政年份:2011
- 资助金额:
$ 2.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




